Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-throughput transgenesis in Xenopus using I-SceI meganuclease

Abstract

In this report we describe an easy, highly efficient transgenesis method for Xenopus. The method is very simple; a commercially available meganuclease, I-SceI, is incubated with a transgene construct carrying its recognition sites, and is subsequently microinjected into fertilized eggs. Approximately 30% (in Xenopus tropicalis) or 20% (in Xenopus laevis) of injected embryos exhibit non-mosaic, promoter-dependent transgene expression, and transgenes from the founder animals are transmitted to offspring. The method is compatible with mRNA or antisense morpholino oligonucleotide injection, and these secondary reagents can be introduced simultaneously or sequentially with a transgene to test their interaction. This high-throughput transgenic technique will be a powerful tool for studying the complex wiring of regulatory networks at the genome-wide level, as well as for facilitating genetic studies in the rapidly breeding diploid frog, X. tropicalis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of transgenic founder embryos (Xenopus tropicalis and Xenopus laevis) generated by the I-SceI method.

Similar content being viewed by others

References

  1. Berezikov, E. & Plasterk, R.H. Camels and zebrafish, viruses and cancer: a microRNA update. Hum. Mol. Genet. 14, R183–R190 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Wasserman, W.W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nature Rev. Genet. 5, 276–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Vandepoele, K., De Vos, W., Taylor, J.S., Meyer, A. & Van de Peer, Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc. Natl. Acad. Sci. USA 101, 1638–1643 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venkatesh, B. & Yap, W.H. Comparative genomics using fugu: a tool for the identification of conserved vertebrate cis-regulatory elements. Bioessays 27, 100–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Muramatsu, T., Shibata, O., Ryoki, S., Ohmori, Y. & Okumura, J. Foreign gene expression in the mouse testis by localized in vivo gene transfer. Biochem. Biophys. Res. Commun. 233, 45–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Momose, T. et al. Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. Growth Differ. 41, 335–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Westerfield, M., Wegner, J., Jegalian, B.G., DeRobertis, E.M. & Puschel, A.W. Specific activation of mammalian Hox promoters in mosaic transgenic zebrafish. Genes Dev. 6, 591–598 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Fisher, S., Grice, E.A., Vinton, R.M., Bessling, S.L. & McCallion, A.S. Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312, 276–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Sargent, T.D. & Mathers, P.H. Analysis of class II gene regulation. Methods Cell Biol. 36, 347–365 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Vize, P.D., Melton, D.A., Hemmati-Brivanlou, A. & Harland, R.M. Assays for gene function in developing Xenopus embryos. Methods Cell Biol. 36, 367–387 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Kroll, K.L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183 (1996).

    CAS  PubMed  Google Scholar 

  13. Amaya, E. & Kroll, K.L. A method for generating transgenic frog embryos. Methods Mol. Biol. 97, 393–414 (1999).

    CAS  PubMed  Google Scholar 

  14. Amaya, E., Offield, M.F. & Grainger, R.M. Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet. 14, 253–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Offield, M.F., Hirsch, N. & Grainger, R.M. The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos. Development 127, 1789–1797 (2000).

    CAS  PubMed  Google Scholar 

  16. Hirsch, N., Zimmerman, L.B. & Grainger, R.M. Xenopus, the next generation: X. tropicalis genetics and genomics. Dev. Dyn. 225, 422–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hirsch, N. et al. Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Dev. Dyn. 225, 522–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Khokha, M.K. et al. Techniques and probes for the study of Xenopus tropicalis development. Dev. Dyn. 225, 499–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Duellman, W.E. & Trueb, L. Biology of Amphibians (McGrawHill, New York, 1986).

  20. Tymowska, J. Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenet. Cell Genet. 12, 297–304 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. de Sa, R.O. & Hillis, D.M. Phylogenetic relationships of the pipid frogs Xenopus and Silurana: an integration of ribosomal DNA and morphology. Mol. Biol. Evol. 7, 365–376 (1990).

    CAS  PubMed  Google Scholar 

  22. Allen, B.G. & Weeks, D.L. Transgenic Xenopus laevis embryos can be generated using φC31 integrase. Nature Methods 2, 975–979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thermes, V. et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ogino, H., McConnell, W.B. & Grainger, R.M. Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech. Dev. 123, 103–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Pan, F.C., Chen, Y., Loeber, J., Henningfeld, K. & Pieler, T. I-SceI meganuclease-mediated transgenesis in Xenopus. Dev. Dyn. 235, 247–252 (2006).

    Article  PubMed  Google Scholar 

  26. Jacquier, A. & Dujon, B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41, 383–394 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (North-Holland Publishing Company, Amsterdam, 1967).

  28. Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y. & Kondoh, H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell. 4, 509–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Sandelin, A. et al. Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. BMC Genomics 5, 99 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  30. de la Calle-Mustienes, E. et al. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 15, 1061–1072 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Plessy, C., Dickmeis, T., Chalmel, F. & Strahle, U. Enhancer sequence conservation between vertebrates is favoured in developmental regulator genes. Trends Genet. 21, 207–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Woolfe, A. et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005).

    Article  PubMed  Google Scholar 

  33. Chae, J., Zimmerman, L.B. & Grainger, R.M. Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. Mech. Dev. 117, 235–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hartley, K.O., Nutt, S.L. & Amaya, E. Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc. Natl. Acad. Sci. USA 99, 1377–1382 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu, J.K., Holland, N.D. & Holland, L.Z. Tissue-specific expression of FoxD reporter constructs in amphioxus embryos. Dev. Biol. 274, 452–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sive, H., Grainger, R. & Harland, R. Early Development of Xenopus laevis: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).

  37. Sambrook, J. & Russell, D.W. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001).

  38. Hartley, K.O., Hardcastle, Z., Friday, R.V., Amaya, E. & Papalopulu, N. Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. Dev. Biol. 238, 168–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Moody, S.A. & Kline, M.J. Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anat. Embryol. 182, 347–362 (1990).

    Article  CAS  Google Scholar 

  40. Hill, R.E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank V. Thermes, J. S. Joly, J. Wittbrodt and E. Amaya for kindly providing plasmids. We also thank J. Wittbrodt, T. Hollemann and A. Brandli for helpful discussions about the I-SceI procedure. We also are grateful to members of the Grainger laboratory for continuous positive discussions regarding this study. This research was supported by US National Institutes of Health grants RR13221, EY06675, EY10283 and EY17400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M Grainger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogino, H., McConnell, W. & Grainger, R. High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1, 1703–1710 (2006). https://doi.org/10.1038/nprot.2006.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.208

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing