Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromatin assembly factor CAF-1 represses priming of plant defence response genes

Abstract

Plants have evolved efficient defence systems against pathogens that often rely on specific transcriptional responses. Priming is part of the defence syndrome, by establishing a hypersensitive state of defence genes such as after a first encounter with a pathogen. Because activation of defence responses has a fitness cost, priming must be tightly controlled to prevent spurious activation of defence. However, mechanisms that repress defence gene priming are poorly understood. Here, we show that the histone chaperone CAF-1 is required to establish a repressed chromatin state at defence genes. Absence of CAF-1 results in spurious activation of a salicylic acid-dependent pathogen defence response in plants grown under non-sterile conditions. Chromatin at defence response genes in CAF-1 mutants under non-inductive (sterile) conditions is marked by low nucleosome occupancy and high H3K4me3 at transcription start sites, resembling chromatin in primed wild-type plants. We conclude that CAF-1-mediated chromatin assembly prevents the establishment of a primed state that may under standard non-sterile growth conditions result in spurious activation of SA-dependent defence responses and consequential reduction of plant vigour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of FAS2 reduces plant vigour and activates SA-mediated defence responses.
Figure 2: PR1 in fas2 is primed for a SA response.
Figure 3: Chromatin at selected defence genes in fas2 plants resembles BABA- or SA-treated wild-type (WT) plants.
Figure 4: Phenotype severity in fas2 plants is modulated by SA.
Figure 5: Transcriptional activation of PR1 and chromatin features of 8-day-old fas2 NahG seedlings resemble fas2.

References

  1. Vlot, A. C., Dempsey, D. A. & Klessig, D. F. Salicylic Acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Fu, Z. Q. & Dong, X. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64, 839–863 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Conrath, U. Molecular aspects of defence priming. Trends Plant Sci. 16, 524–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Pieterse, C. M. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Bruce, T. J. A., Matthes, M. C., Napier, J. A. & Pickett, J. A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 173, 603–608 (2007).

    Article  CAS  Google Scholar 

  7. Burgess, R. J. & Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nature Struct. Mol. Biol. 20, 14–22 (2013).

    Article  CAS  Google Scholar 

  8. JiaoRamirez-Parra, E. & Gutierrez, C. The many faces of Chromatin Assembly Factor 1. Trends Plant Sci. 12, 570–576 (2007).

    Article  Google Scholar 

  9. Kaya, H. et al. FASCIATA genes for Chromatin Assembly Factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Kaufman, P. D., Kobayashi, R., Kessler, N. & Stillman, B. The p150 and p60 subunits of chromatin assembly factor 1: a molecular link between newly synthesized histones and DNA replication. Cell 81, 1105–1114 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Hoek, M. & Stillman, B. Chromatin Assembly Factor-1 is essential and couples chromatin assembly to DNA replication in vivo. Proc. Natl Acad. Sci. USA 100, 12183–12188 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaufman, P. D., Kobayashi, R. & Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking Chromatin Assembly Factor-1. Genes Dev. 11, 345–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Endo, M. et al. Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J. 25, 5579–5590 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, Z., Tan, J. L., Ingouff, M., Sundaresan, V. & Berger, F. Chromatin Assembly Factor-1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development 135, 65–73 (2007).

    Article  PubMed  Google Scholar 

  15. Ramirez-Parra, E. & Gutierrez, C. E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol. 144, 105–120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schönrock, N., Exner, V., Probst, A., Gruissem, W. & Hennig, L. Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J. Biol. Chem. 281, 9560–9568 (2006).

    Article  PubMed  Google Scholar 

  17. Kirik, A., Pecinka, A., Wendeler, E. & Reiss, B. The Chromatin Assembly Factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18, 2431–2442 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mozgova, I., Mokros, P. & Fajkus, J. Dysfunction of Chromatin Assembly Factor-1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22, 2768–2780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ono, T. et al. Chromatin Assembly Factor-1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells 11, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Exner, V., Taranto, P., Schönrock, N., Gruissem, W. & Hennig, L. Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development 133, 4163–4172 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Hisanaga, T. et al. The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development. Plant Physiol. 162, 831–841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leyser, H. M. & Furner, I. J. Characterisation of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116, 397–403 (1992).

    Google Scholar 

  23. Baerenfaller, K. et al. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol. Syst. Biol. 8, 606 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gohre, V., Jones, A. M., Sklenar, J., Robatzek, S. & Weber, A. P. Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol. Plant Microbe Interact. 25, 1083–1092 (2012).

    Article  PubMed  Google Scholar 

  25. Torres Zabala, M. de et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants 1, 15074 (2015).

    Article  PubMed  Google Scholar 

  26. Denoux, C. et al. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant 1, 423–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Garcion, C. et al. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol. 147, 1279–1287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiermer, M., Feys, B. J. & Parker, J. E. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8, 383–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Uknes, S. et al. Acquired resistance in Arabidopsis. Plant Cell 4, 645–656 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lodhi, N. et al. Interactions between upstream and core promoter sequences determine gene expression and nucleosome positioning in tobacco PR-1a promoter. Biochim. Biophys. Acta 1779, 634–644 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Jaskiewicz, M., Conrath, U. & Peterhansel, C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12, 50–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Ramirez, V., Lopez, A., Mauch-Mani, B., Gil, M. J. & Vera, P. An extracellular subtilase switch for immune priming in Arabidopsis. PLoS Pathogens 9, e1003445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Hulten, M., Pelser, M., van Loon, L. C., Pieterse, C. M. & Ton, J. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 5602–5607 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heidel, A. J., Clarke, J. D., Antonovics, J. & Dong, X. Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168, 2197–2206 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S. & Ryals, J. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol. Plant Microbe Interact. 8, 863–870 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Fragniere, C., Serrano, M., Abou-Mansour, E., Metraux, J. P. & L'Haridon, F. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. 585, 1847–1852 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Bowling, S. A. et al. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6, 1845–1857 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frye, C. A. & Innes, R. W. An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10, 947–956 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Po-Wen, C., Singh, P. & Zimmerli, L. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 14, 58–70 (2013).

    Article  PubMed  Google Scholar 

  40. Singh, P. et al. Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1-dependent manner. Plant Cell 26, 2676–2688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. March-Diaz, R. et al. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J. 53, 475–487 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Yan, S. et al. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52, 602–610 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Choi, S. M. et al. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J. 71, 135–146 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Weng, M. et al. Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ. 37, 2128–2138 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Rehrauer, H. et al. AGRONOMICS1: A new resource for Arabidopsis transcriptome profiling. Plant Physiol. 152, 487–499 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R. & Dangl, J. L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Ishiga, Y., Ishiga, T., Uppalapati, S. R. & Mysore, K. S. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods 7, 32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shu, H., Gruissem, W. & Hennig, L. Measuring Arabidopsis chromatin accessibility using DNase I-polymerase chain reaction and DNase I-chip assays. Plant Physiol. 162, 1794–1801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by EMBO fellowship ALTF_1492-2011 to I.M., by grants to L.H. from the Swiss National Science Foundation, the Swedish Research Councils VR and FORMAS, by the Sixth Framework Program of the European Commission through the AGRON-OMICS Integrated Project (grant no. LSHG-CT-2006-037704 to W.G.), by the Knut-and-Alice Wallenberg foundation to L.H. and D.H., and by grant 310030B_141176 from the Swiss National Science Foundation to J.-P.M. We thank the reviewers for valuable comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I.M., T.W., Q.L., E.A.-M. and F.H. performed the experiments; I.M., T.W. and L.H. analysed data; I.M., T.W., D.H., J.-P.M., W.G. and L.H. planned the experiments; and I.M., D.H., W.G. and L.H. wrote the manuscript.

Corresponding author

Correspondence to Lars Hennig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozgová, I., Wildhaber, T., Liu, Q. et al. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nature Plants 1, 15127 (2015). https://doi.org/10.1038/nplants.2015.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing