Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The non-processive rice kinesin-14 OsKCH1 transports actin filaments along microtubules with two distinct velocities

Abstract

Microtubules and actin filaments function coordinately in many cellular processes13. Although much of this coordination is mediated by proteins that statically bridge the two cytoskeletal networks46, kinesin-14 motors with an actin binding calponin homology domain (KCHs) have been discovered as putatively dynamic crosslinkers in plants7,8. OsKCH1, a KCH from rice, interacts with both microtubules and actin filaments in vivo and in vitro9. However, it has remained unclear whether this interaction is dynamic or if actin binding reduces or even abolishes the motor's motility on microtubules10,11. Here, we directly show in vitro that OsKCH1 is a non-processive, minus-end-directed motor that transports actin filaments along microtubules. Interestingly, we observe two distinct transport velocities dependent on the relative orientation of the actin filaments with respect to the microtubules. In addition, torsional compliance measurements on individual molecules reveal low flexibility in OsKCH1. We suggest that the orientation-dependent transport velocities emerge from OsKCH1's low torsional compliance combined with an inherently oriented binding to the actin filament. Together, our results imply a central role of OsKCH1 in the polar orientation of actin filaments along microtubules, and thus a contribution to the organization of the cytoskeletal architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OsKCH1 transports actin filaments along microtubules with two distinct velocities.
Figure 2: OsKCH1 is a microtubule minus-end-directed motor.
Figure 3: OsKCH1 has a low torsional compliance when bound to an actin filament.
Figure 4: Proposed model for the mechanism underlying OsKCH1's two transport velocities.

Similar content being viewed by others

References

  1. Collings, D. A. Plant Microtubules Vol. 11 (ed. Nick, P. ) (Plant Cell Monographs, Springer, 2008).

    Google Scholar 

  2. Wasteneys, G. O. & Galway, M. E. Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu. Rev. Plant Biol 54, 691–722 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Petrasek, J. & Schwarzerova, K. Actin and microtubule cytoskeleton interactions. Curr. Opin. Plant Biol. 12, 728–734 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Deeks, M. J. et al. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci. 123, 1209–1215 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Sun, D., Leung, C. L. & Liem, R. K. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J. Cell Sci. 114, 161–172 (2001).

    CAS  PubMed  Google Scholar 

  6. Rothenberg, M. E., Rogers, S. L., Vale, R. D., Jan, L. Y. & Jan, Y. N. Drosophila pod-1 crosslinks both actin and microtubules and controls the targeting of axons. Neuron 39, 779–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, A. S. & Day, I. S. Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2, 2 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Richardson, D. N., Simmons, M. P. & Reddy, A. S. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7, 18 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Frey, N., Klotz, J. & Nick, P. Dynamic bridges—a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol. 50, 1493–1506 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Umezu, N., Umeki, N., Mitsui, T., Kondo, K. & Maruta, S. Characterization of a novel rice kinesin O12 with a calponin homology domain. J. Biochem. 149, 91–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Klotz, J. & Nick, P. A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol. 193, 576–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, T., Sun, X., Jiang, S., Ren, D. & Liu, G. Cotton GhKCH2, a plant-specific kinesin, is low-affinitive and nucleotide-independent as binding to microtubule. J. Biochem. Mol. Biol. 40, 723–730 (2007).

    CAS  PubMed  Google Scholar 

  13. Xu, T. et al. A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem. J. 421, 171–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Gimona, M. & Mital, R. The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J. Cell Sci. 111(Pt 13), 1813–1821 (1998).

    CAS  PubMed  Google Scholar 

  15. Frey, N., Klotz, J. & Nick, P. A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J. Exp. Bot. 61, 3423–3437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dixit, R. Putting a bifunctional motor to work: insights into the role of plant KCH kinesins. New Phytol. 193, 543–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Schneider, R. & Persson, S. Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins. Front. Plant Sci. 6, 415 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fink, G. et al. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nature Cell Biol. 11, 717–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Nitzsche, B. et al. Studying kinesin motors by optical 3D-nanometry in gliding motility assays. Methods Cell Biol. 95, 247–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Endow, S. A. Determinants of molecular motor directionality. Nature Cell Biol. 1, E163–E167 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi, T. et al. Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research. PLoS ONE 3, e3822 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jonsson, E., Yamada, M., Vale, R. D. & Goshima, G. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nature Plants 1, 15087 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Staiger, C. J. et al. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J. Cell Biol. 184, 269–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerson-Gurwitz, A. et al. Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry. EMBO J. 30, 4942–4954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sellers, J. R. & Kachar, B. Polarity and velocity of sliding filaments: control of direction by actin and of speed by myosin. Science 249, 406–408 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Hunt, A. J. & Howard, J. Kinesin swivels to permit microtubule movement in any direction. Proc. Natl Acad. Sci. USA 90, 11653–11657 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gutierrez-Medina, B., Fehr, A. N. & Block, S. M. Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping. Proc. Natl Acad. Sci. USA 106, 17007–17012 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reuther, C., Hajdo, L., Tucker, R., Kasprzak, A. A. & Diez, S. Biotemplated nanopatterning of planar surfaces with molecular motors. Nano Lett. 6, 2177–2183 (2006).

  30. Nezlin, R. S., Zagyansky, Y. A. & Tumerman, L. A. Strong evidence for the freedom of rotation of immunoglobulin G subunits. J. Mol. Biol. 50, 569–572 (1970).

    Article  CAS  PubMed  Google Scholar 

  31. Lupas, A. N. & Gruber, M. The structure of alpha-helical coiled coils. Adv. Protein Chem. 70, 37–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Walter, W. J., Beranek, V., Fischermeier, E. & Diez, S. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. PLoS ONE 7, e42218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walter, W. J., Koonce, M. P., Brenner, B. & Steffen, W. Two independent switches regulate cytoplasmic dynein's processivity and directionality. Proc. Natl Acad. Sci. USA 109, 5289–5293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruhnow, F., Zwicker, D. & Diez, S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 100, 2820–2828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Thodte, C. Bräuer and J. Sandberg-Meinhardt for technical assistance, P. Nick (KIT) for providing the OsKCH(aa1-744) expression plasmid and T. Scholz (Hannover Medical School) for providing rabbit muscle actin. W.J.W. and S.D. acknowledge support from the European Research Council (ERC starting grant 242933 to S.D.) and the Deutsche Forschungsgemeinschaft (Heisenberg programme grant DI 1226/4 and research unit SFG 877 grant DI 1226/5).

Author information

Authors and Affiliations

Authors

Contributions

W.J.W. and S.D. initiated research, designed experiments and wrote the manuscript. W.J.W. created reagents. W.J.W., I.M. and F.R. performed experiments and analysed data. All authors read the manuscript.

Corresponding authors

Correspondence to Wilhelm J. Walter or Stefan Diez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, W., Machens, I., Rafieian, F. et al. The non-processive rice kinesin-14 OsKCH1 transports actin filaments along microtubules with two distinct velocities. Nature Plants 1, 15111 (2015). https://doi.org/10.1038/nplants.2015.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing