Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Structural and quantum-state phase transitions in van der Waals layered materials

An Erratum to this article was published on 05 December 2017

An Erratum to this article was published on 05 December 2017

This article has been updated

Abstract

Van der Waals layered transition metal dichalcogenides can exist in many different atomic and electronic phases. Such diverse polymorphisms not only provide a route for investigating novel topological states, such as quantum spin Hall insulators, superconductors and Weyl semimetals, but may also have applications in fields ranging from electronic and optical/quantum devices to electrochemical catalysis. And the methods for triggering robust phase transitions between polymorphs are evolving and diversifying—several growth processes, high-pressure/strain methods, and optical, electronic and chemical treatments have been developed. Here, we discuss recent progress on phase transitions and the related physics in layered materials, and demonstrate unique features compared with conventional solid-state materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition and correlation between phase and physics in TMDs.
Figure 2: Structures of single-layer TMDs.
Figure 3: Superconductivity and topological phase transitions in TMDs.
Figure 4: Homojunction for transistors and hydrogen-production applications.
Figure 5: MIT in 2D TMDs.

Similar content being viewed by others

Change history

  • 10 November 2017

    In the version of this Progress Article originally published, one of the t2g states in Fig. 2a was missing; there should have been three. This has now been corrected.

References

  1. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  ADS  Google Scholar 

  2. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  3. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  ADS  Google Scholar 

  4. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2 . Nat. Phys. 11, 482–486 (2015).

    Article  Google Scholar 

  5. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2 . Science 349, 625–628 (2015).

    Article  ADS  Google Scholar 

  6. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  Google Scholar 

  7. Choe, D.-H., Sung, H.-J. & Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 83, 125109 (2016).

    Article  ADS  Google Scholar 

  8. Liu, J., Wang, H., Fang, C., Fu, L. & Qian, X. van der Waals stacking-induced topological phase transition in layered ternary transition metal chalcogenides. Nano Lett. 17, 467–475 (2017).

    Article  ADS  Google Scholar 

  9. Fei, Z. et al. Edge conduction in monolayer WTe2 . Nat. Phys. http://dx.doi.org/10.1038/nphys4091 (2017).

  10. Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2 . Nat. Phys. 12, 144–149 (2015).

    Article  Google Scholar 

  11. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2 . Science 350, 1353–1357 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  ADS  Google Scholar 

  13. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article  ADS  Google Scholar 

  14. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2 . Phys. Rev. B 92, 161107(R) (2015).

    Article  ADS  Google Scholar 

  15. Li, W. & Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 7, 10843 (2016).

    Article  ADS  Google Scholar 

  16. Kan, M. et al. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 118, 1515–1522 (2014).

    Article  Google Scholar 

  17. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nat. Nanotech. 10, 765–769 (2015).

    Article  ADS  Google Scholar 

  18. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  19. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2 . Nat. Commun. 7, 11038 (2016).

    Article  ADS  Google Scholar 

  20. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  21. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  22. Song, S. et al. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016).

    Article  ADS  Google Scholar 

  23. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 . Nat. Nanotech. 9, 391–396 (2014).

    Article  ADS  Google Scholar 

  24. Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015).

    Article  ADS  Google Scholar 

  25. Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    Article  Google Scholar 

  26. Kolobov, A. V., Fons, P. & Tominaga, J. Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2 . Phys. Rev. B 94, 094114 (2016).

    Article  ADS  Google Scholar 

  27. Kim, S. et al. Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2 . 2D Mater. 4, 024004 (2017).

    Article  Google Scholar 

  28. Seok, J. et al. Active hydrogen evolution through lattice distortion in metallic MoTe2 . 2D Mater. 4, 025061 (2017).

    Article  Google Scholar 

  29. Chen, X. et al. Probing the electron states and metal–insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nat. Commun. 6, 6088 (2015).

    Article  ADS  Google Scholar 

  30. Das Sarma, S. Two-dimensional metal–insulator transition as a percolation transition in a high-mobility electron system. Phys. Rev. Lett. 94, 136401 (2005).

    Article  ADS  Google Scholar 

  31. Popovic, D., Fowler, A. B. & Washburn, S. Metal–insulator transition in two dimensions: effects of disorder and magnetic field. Phys. Rev. Lett. 79, 1543–1546 (1997).

    Article  ADS  Google Scholar 

  32. Pradhan, N. R. et al. Metal to insulator quantum-phase transition in few-layered ReS2 . Nano Lett. 15, 8377–8384 (2015).

    Article  ADS  Google Scholar 

  33. Wong, H.-S. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

    Article  Google Scholar 

  34. Park, J. C. et al. Phase-engineered synthesis of centimeter-scale 1T’- and 2H- molybdenum ditelluride thin films. ACS Nano 9, 6548–6554 (2015).

    Article  Google Scholar 

  35. Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe2 . J. Am. Chem. Soc. 137, 11892–11895 (2015).

    Article  Google Scholar 

  36. Chae, S. H. et al. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano 10, 1309–1316 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

H.Y. acknowledges support from the National Research Foundation of Korea (NRF) under grant no. NRF-2017R1A2B2008366. S.W.K. acknowledges support from the Creative Materials Discovery Program through the NRF funded by the Ministry of Science, ICT and Future Planning (2015M3D1A1070639). Y.H.L. acknowledges support from the Institute for Basic Science (IBS-R011-D1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heejun Yang, Sung Wng Kim or Young Hee Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Kim, S., Chhowalla, M. et al. Structural and quantum-state phase transitions in van der Waals layered materials. Nature Phys 13, 931–937 (2017). https://doi.org/10.1038/nphys4188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing