Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-controlled flows in active fluids

Abstract

Many photosynthetic microorganisms are able to detect light and move towards optimal intensities. This ability, known as phototaxis, plays a major role in ecology by affecting natural phytoplankton mass transfers, and has important applications in bioreactor and artificial micro-swimmers technologies. Here we show that this property can be exploited to generate macroscopic fluid flows using a localized light source directed towards shallow suspensions of phototactic microorganisms. Within the intensity range of positive phototaxis, algae accumulate beneath the excitation light, where collective effects lead to the emergence of radially symmetric convective flows. These flows can thus be used as hydrodynamic tweezers to manipulate small floating objects. At high cell density and layer depth, we uncover a new kind of instability, wherein the viscous torque exerted by self-generated fluid flows on the swimmers induces the formation of travelling waves. A model coupling fluid flow, cell concentration and orientation finely reproduces the experimental data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up used to investigate the interaction between light and algae.
Figure 2: Effect of thickness and initial concentration on the concentration profiles.
Figure 3: Formation of unstable patterns above a critical Rayleigh number.
Figure 4: Underlying mechanism of the instability.

Similar content being viewed by others

References

  1. Roberts, A. M. Geotaxis in motile micro-organisms. J. Exp. Biol. 53, 687–699 (1970).

    Google Scholar 

  2. Wager, H. On the effect of gravity upon the movements and aggregation of Euglena viridis and other micro-organisms. Phil. Trans. R. Soc. Lond. B 201, 333–390 (1911).

    Article  ADS  Google Scholar 

  3. Kessler, J. O. Hydrodynamic focusing of motile algal cells. Nature 313, 208–210 (1985).

    Article  ADS  Google Scholar 

  4. Durham, W. M., Kessler, J. O. & Stocker, R. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323, 1067–1070 (2009).

    Article  ADS  Google Scholar 

  5. Adler, J., Hazelbauer, G. L. & Dahl, M. M. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115, 824–847 (1973).

    Google Scholar 

  6. Barbara, G. M. & Mitchell, J. G. Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 44, 79–87 (2003).

    Article  Google Scholar 

  7. Barbara, G. M. & Mitchell, J. G. Marine bacterial organisation around point-like sources of amino acids. FEMS Microbiol. Ecol. 43, 99–109 (2003).

    Article  Google Scholar 

  8. Adler, J. Chemoreceptors in bacteria. Science 166, 1588–1597 (1969).

    Article  ADS  Google Scholar 

  9. Giometto, A., Altermatt, F., Maritan, A., Stocker, R. & Rinaldo, A. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. Proc. Natl Acad. Sci. USA 112, 7045–7050 (2015).

    Article  ADS  Google Scholar 

  10. Brenner, M. P., Levitov, L. S. & Budrene, E. O. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 74, 1677–1693 (1998).

    Article  ADS  Google Scholar 

  11. Koch, D. L. & Subramanian, G. Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 637–659 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  12. Kurtuldu, H., Guasto, J. S., Johnson, K. A. & Gollub, J. P. Enhancement of biomixing by swimming algal cells in two-dimensional films. Proc. Natl Acad. Sci. USA 108, 10391–10395 (2011).

    Article  ADS  Google Scholar 

  13. Wilhelmus, M. M. & Dabiri, J. O. Observations of large-scale fluid transport by laser-guided plankton aggregations. Phys. Fluids 26, 101302 (2014).

    Article  ADS  Google Scholar 

  14. Bees, M. A. & Croze, O. A. Mathematics for streamlined biofuel production from unicellular algae. Biofuels 5, 53–65 (2014).

    Article  Google Scholar 

  15. Childress, S., Levandowksy, M. & Spiegel, E. A. Pattern formation in a suspension of swimming micro-organisms: equations and stability theory. J. Fluid Mech. 63, 591–613 (1975).

    Article  ADS  Google Scholar 

  16. Pedley, T. J., Hill, N. A. & Kessler, J. O. The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. J. Fluid Mech. 195, 223–237 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  17. Pedley, T. J. & Kessler, J. O. Hydrodynamic phenomena in suspensions of swimming micro-organisms. Annu. Rev. Fluid Mech. 24, 313–358 (1992).

    Article  ADS  Google Scholar 

  18. Yamamoto, Y., Okayama, T., Sato, K. & Takaoki, T. Relation of pattern formation to external conditions in the flagellate Chlamydomonas reinhardtii. Eur. J. Protistol. 28, 415–420 (1992).

    Article  Google Scholar 

  19. Janosi, I. M., Kessler, J. O. & Horvath, V. K. Onset of bioconvection in suspensions of Bacillus subtilis. Phys. Rev. E 58, 4793–4800 (1998).

    Article  ADS  Google Scholar 

  20. Dombrowski, L., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004).

    Article  ADS  Google Scholar 

  21. Tuval, I. et al. Bacterial swimming and oxygen transport near contact lines. Proc. Natl Acad. Sci. USA 102, 2277–2282 (2005).

    Article  ADS  Google Scholar 

  22. Croze, O. A., Ashraf, E. E. & Bees, M. A. Sheared bioconvection in a horizontal tube. Phys. Biol. 7, 046001 (2010).

    Article  ADS  Google Scholar 

  23. Ghorai, S., Panda, M. K. & Hill, N. A. Bioconvection in a suspension of isotropically scattering phototactic algae. Phys. Fluids 22, 071901 (2010).

    Article  ADS  Google Scholar 

  24. Suematsu, N. J. et al. Localized bioconvection of Euglena caused by phototaxis in the lateral direction. J. Phys. Soc. Jpn 80, 064003 (2011).

    Article  ADS  Google Scholar 

  25. Williams, C. R. & Bees, M. A. A tale of three taxes: photo-gyro-gravitactic bioconvection. J. Exp. Biol. 214, 2398–2408 (2011).

    Article  Google Scholar 

  26. Williams, C. R. & Bees, M. A. Photo-gyrotactic bioconvection. J. Fluid Mech. 678, 41–86 (2011).

    Article  ADS  Google Scholar 

  27. Karimi, A. & Ardekani, A. M. Gyrotactic bioconvection at pycnoclines. J. Fluid Mech. 733, 245–267 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  28. Shoji, E., Nishimori, H., Awazu, A., Izumi, S. & Lima, M. Localized bioconvection patterns and their initial state dependency in Euglena gracilis suspensions in an annular container. J. Phys. Soc. Jpn 83, 043001 (2014).

    Article  ADS  Google Scholar 

  29. Vincent, R. & Hill, N. Bioconvection in a suspension of phototactic algae. J. Fluid Mech. 327, 343–371 (1996).

    Article  ADS  Google Scholar 

  30. Lord Rayleigh Scientific Papers Vol. II (Cambridge Univ. Press, 1900).

    MATH  Google Scholar 

  31. Taylor, G. I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201, 192–196 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  32. Polin, M., Tuval, I., Drescher, K., Gollub, J. P. & Goldstein, R. E. Chlamydomonas swims with two gears in a eukaryotic version of run-and-tumble locomotion. Science 325, 487–490 (2009).

    Article  ADS  Google Scholar 

  33. Bennett, R. R. & Golestanian, R. A steering mechanism for phototaxis in Chlamydomonas. J. R. Soc. Interface 12, 20141164 (2015).

    Article  Google Scholar 

  34. Harris, E. H. The Chlamydomonas Sourcebook Vol. 1 (Academic, 2009).

    Google Scholar 

  35. Goldstein, R. E. Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47, 343–375 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  36. Siaut, M. et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11, 7 (2011).

    Article  Google Scholar 

  37. Melis, A., Zhang, L., Forestier, M. & Ghirardi, M. L. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127–136 (2000).

    Article  Google Scholar 

  38. Almaraz-Delgado, A. L., Flores-Uribe, J., Pérez-España, V. H., Salgado-Manjarrez, E. & Badillo-Corona, J. A. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Exp. 4, 57 (2013).

    Article  Google Scholar 

  39. Rasala, B. A. & Mayfield, S. P. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth. Res. 123, 227–239 (2014).

    Article  Google Scholar 

  40. Turner, J. S. Buoyancy Effects in Fluids (Cambridge Univ. Press, 1973).

    Book  Google Scholar 

  41. Riviere, D., Selva, B., Chraibi, H., Delabre, U. & Delville, J.-P. Convection flows driven by laser heating of a liquid layer. Phys. Rev. E 93, 023112 (2016).

    Article  ADS  Google Scholar 

  42. Birikh, R. V. On thermocapillary convection in a horizontal layer of a liquid. J. Appl. Mech. Tech. Phys. 7, 43–44 (1966).

    Article  ADS  Google Scholar 

  43. Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922).

    Article  ADS  Google Scholar 

  44. Leal, L. G. & Hinch, E. The rheology of a suspension of nearly spherical particles subject to Brownian rotations. J. Fluid Mech. 55, 745–765 (1972).

    Article  ADS  Google Scholar 

  45. Garcia, X., Rafaï, S. & Peyla, P. Light control of the flow of phototactic microswimmer suspensions. Phys. Rev. Lett. 110, 138106 (2013).

    Article  ADS  Google Scholar 

  46. Adler, J. Chemotaxis in bacteria. Science 153, 708–716 (1966).

    Article  ADS  Google Scholar 

  47. Salman, H., Zilman, A., Loverdo, C., Jeffroy, M. & Libchaber, A. Solitary modes of bacterial culture in a temperature gradient. Phys. Rev. Lett. 97, 118101 (2006).

    Article  ADS  Google Scholar 

  48. Budrene, E. O. & Berg, H. Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991).

    Article  ADS  Google Scholar 

  49. Budrene, E. O. & Berg, H. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995).

    Article  ADS  Google Scholar 

  50. Rafaï, S., Jibuti, L. & Peyla, P. Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to our late colleague F. Rappaport and would like to thank S. Bujaldon from IBPC Institute, Paris, for having provided the strains of Chlamydomonas reinhardtii and for their kind and helpful advice on culture growth. This project is funded by the programme Emergence(s) of the City of Paris. We thank Y. Couder for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.D. and P.B. conceived and designed the experiments. J.D. and M.C.R. performed the experiments. J.D. and P.B. analysed the data, contributed reagents/materials/analysis tools and wrote the paper.

Corresponding author

Correspondence to Julien Dervaux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 626 kb)

Supplementary Movie 1

Supplementary Movie (MP4 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dervaux, J., Capellazzi Resta, M. & Brunet, P. Light-controlled flows in active fluids. Nature Phys 13, 306–312 (2017). https://doi.org/10.1038/nphys3926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3926

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing