Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wave propagation control at the deep subwavelength scale in metamaterials

Abstract

The ability to control wave propagation is of fundamental interest in many areas of physics. Photonic crystals proved very useful for this purpose but, because they are based on Bragg interferences, these artificial media require structures with large dimensions. Metamaterials, on the other hand, can exhibit very deep subwavelength spatial scales. In general they are studied for their bulk effective properties that lead to effects such as negative refraction. Here we go beyond this effective medium paradigm and we use a microscopic approach to study metamaterials based on resonant unit cells. We show that we can tailor unit cells locally to shape the flow of waves at deep subwavelength scales. We validate our approach in experiments with both electromagnetic and acoustic waves in the metre range demonstrating cavities, waveguides, corners and splitters with centimetre-scale dimensions, an order of magnitude smaller than previous proposals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing the electromagnetic metamaterial.
Figure 2: Moulding the flow of electromagnetic waves at the deep subwavelength scale.
Figure 3: Probing the acoustic metamaterial.
Figure 4: Moulding the flow of acoustic waves at the deep subwavelength scale.

Similar content being viewed by others

References

  1. Kittel, C. Introduction to Solid State Physics (Wiley, 1996).

    MATH  Google Scholar 

  2. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  3. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  4. Yablonovitch, E., Gmitter, T. J. & Leung, K. M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991).

    Article  ADS  Google Scholar 

  5. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  6. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    Article  ADS  Google Scholar 

  7. Vasseur, J. O. et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001).

    Article  ADS  Google Scholar 

  8. Liu, Z., Chan, C. T., Sheng, P., Goertzen, A. L. & Page, J. H. Elastic wave scattering by periodic structures of spherical objects: Theory and experiment. Phys. Rev. B 62, 2446–2457 (2000).

    Article  ADS  Google Scholar 

  9. Yablonovitch, E. et al. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991).

    Article  ADS  Google Scholar 

  10. Lin, S-Y., Chow, E., Hietala, V., Villeneuve, P. R. & Joannopoulos, J. D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998).

    Article  ADS  Google Scholar 

  11. Chutinan, A. & Noda, S. Highly confined waveguides and waveguide bends in three-dimensional photonic crystal. Appl. Phys. Lett. 75, 3739–3741 (1999).

    Article  ADS  Google Scholar 

  12. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  13. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  ADS  Google Scholar 

  14. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  15. Shen, J. T., Catrysse, P. B. & Fan, S. Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 94, 197401 (2005).

    Article  ADS  Google Scholar 

  16. Wei, X., Shi, H., Dong, X., Lu, Y. & Du, C. A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures. Appl. Phys. Lett. 97, 011904 (2010).

    Article  ADS  Google Scholar 

  17. Alù, A., Salandrino, A. & Engheta, N. Negative effective permeability and left-handed materials at optical frequencies. Opt. Express 14, 1557–1567 (2006).

    Article  ADS  Google Scholar 

  18. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

    Article  ADS  Google Scholar 

  19. Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  20. Engheta, N. & Ziolkowski, R. (eds) Metamaterials: Physics and Engineering Explorations (Wiley, IEEE Press, 2006).

  21. Liu, H. et al. Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies. Phys. Rev. Lett. 97, 243902 (2006).

    Article  ADS  Google Scholar 

  22. Ishikawa, A., Zhang, S., Genov, D.A., Bartal, G. & Zhang, X. Deep subwavelength terahertz waveguides using gap magnetic plasmon. Phys. Rev. Lett. 102, 043904 (2009).

    Article  ADS  Google Scholar 

  23. Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    Article  ADS  Google Scholar 

  24. Maier, S. A., Brongersma, M. L. & Atwater, H. A. Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Appl. Phys. Lett. 78, 16–18 (2001).

    Article  ADS  Google Scholar 

  25. Martin-Cano, D. et al. Domino plasmons for subwavelength terahertz circuitry. Opt. Express 18, 754–764 (2010).

    Article  ADS  Google Scholar 

  26. Yariv, A & Yeh, P. Optical Waves in Crystals Ch. 6 (Wiley, 1984).

    Google Scholar 

  27. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  ADS  Google Scholar 

  28. Cowan, M. L., Page, J. H. & Sheng, P. Ultrasonic wave transport in a system of disordered resonant scatterers: Propagating resonant modes and hybridization gaps. Phys. Rev. B 84, 094305 (2011).

    Article  ADS  Google Scholar 

  29. Belov, P.A. & Silveirinha, M. Resolution of subwavelength transmission devices formed by a wire medium. Phys. Rev. E 73, 056607 (2006).

    Article  ADS  Google Scholar 

  30. Lerosey, G., de Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  31. Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett. 104, 203901 (2010).

    Article  ADS  Google Scholar 

  32. Lemoult, F., Fink, M. & Lerosey, G. Revisiting the wire medium: An ideal resonant metalens. Wave Random Complex 21, 591–613 (2011).

    Article  ADS  Google Scholar 

  33. Lemoult, F., Fink, M. & Lerosey, G. Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens. Wave Random Complex 21, 614–627 (2011).

    Article  ADS  Google Scholar 

  34. Yariv, A., Xu, Y., Lee, R.K. & Scherer, A. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  ADS  Google Scholar 

  35. Lemoult, F., Fink, M. & Lerosey, G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.L. acknowledges financial support from the French ‘Direction Générale de l’Armement (DGA)’.

Author information

Authors and Affiliations

Authors

Contributions

G.L. initiated and supervised the project. G.L. and F.L. conceived the theory and the experiments. G.L., F.L. and N.K. performed and analysed the experiments. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Geoffroy Lerosey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemoult, F., Kaina, N., Fink, M. et al. Wave propagation control at the deep subwavelength scale in metamaterials. Nature Phys 9, 55–60 (2013). https://doi.org/10.1038/nphys2480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing