Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices

Abstract

The coupling of surface plasmons and excitons in organic materials can improve the performance of organic optoelectronic devices. Here, we prepare carbon-dot-supported silver nanoparticles (CD–Ag nanoparticles) using the carbon dots both as a reducing agent and a template to fabricate solution-processable polymer light-emitting diodes and polymer solar cells. The surface plasmon resonance effect of CD–Ag nanoparticles allows significant radiative emission and additional light absorption, leading to remarkably enhanced current efficiency of 27.16 cd A−1 and a luminous efficiency of 18.54 lm W−1 in polymer light-emitting diodes as well as a power conversion efficiency of 8.31% and an internal quantum efficiency of 99% in polymer solar cells compared with control devices (current efficiency = 11.65 cd A−1 and luminous efficiency = 6.33 lm W−1 in polymer light-emitting diodes; power conversion efficiency = 7.53% and internal quantum efficiency = 91% in polymer solar cells). These results demonstrate that CD–Ag nanoparticles constitute a versatile and effective route for achieving high-performance polymer optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration and characterization of CD-Ag nanoparticles.
Figure 2: Simulation of the electromagnetic field distribution for CD–Ag nanoparticles.
Figure 3: Effect of CD–Ag nanoparticles on the fluorescence of polymer films.
Figure 4: Device structure and characteristics of polymer OEDs incorporating CD–Ag nanoparticles.
Figure 5: IQE of PTB7:PC71BM-based PSCs with CD–Ag nanoparticles.

Similar content being viewed by others

References

  1. Ren, J. et al. Blue (ZnSe) and green (ZnSe0.9Te0.1) light emitting diodes. J. Cryst. Growth 111, 829–832 (1991).

    Article  ADS  Google Scholar 

  2. AbuShama, J. A. M. et al. Properties of ZnO/CdS/CuInSe2 solar cells with improved performance. Progr. Photovolt. Res. Appl. 12, 39–45 (2004).

    Article  Google Scholar 

  3. Britt, J. & Ferekides, C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993).

    Article  ADS  Google Scholar 

  4. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  ADS  Google Scholar 

  5. He, Z. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photon. 6, 591–595 (2012).

    Article  ADS  Google Scholar 

  6. Liang, Y. et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Article  Google Scholar 

  7. Dou, L. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photon. 6, 180–185 (2012).

    Article  ADS  Google Scholar 

  8. Small, C. E. et al. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nature Photon. 6, 115–120 (2012).

    Article  ADS  Google Scholar 

  9. Choi, H. et al. Combination of titanium oxide and a conjugated polyelectrolyte for high-performance inverted-type organic optoelectronic devices. Adv. Mater. 23, 2759–2763 (2011).

    Article  Google Scholar 

  10. Kulkarni, A. P., Noone, K. M., Munechika, K., Guyer, S. R. & Ginger, D. S. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10, 1501–1505 (2010).

    Article  ADS  Google Scholar 

  11. Kumar, A., Srivastava, R., Tyagi, P., Mehta, D. S. & Kamalasanan, M. N. Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon. Org. Electron. 13, 159–165 (2012).

    Article  Google Scholar 

  12. Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Article  Google Scholar 

  13. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  14. Park, J. H. et al. Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem. Mater. 16, 688–692 (2004).

    Article  Google Scholar 

  15. Mathai, M. K., Choong, V-E., Choulis, S. A., Krummacher, B. & So, F. Highly efficient solution processed blue organic electrophosphorescence with 14 lm/W luminous efficacy. Appl. Phys. Lett. 88, 243512 (2006).

    Article  ADS  Google Scholar 

  16. Munechika, K. et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett. 10, 2598–2603 (2010).

    Article  ADS  Google Scholar 

  17. Heo, M. et al. High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv. Mater. 23, 5689–5693 (2011).

    Article  Google Scholar 

  18. Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

    Article  Google Scholar 

  19. Sun, Y-P. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    Article  Google Scholar 

  20. Zhu, H. et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 5118–5120 (2009).

  21. Lu, J. et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009).

    Article  Google Scholar 

  22. Liu, H., Ye, T. & Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473–6475 (2007).

    Article  Google Scholar 

  23. Liu, R. et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 48, 4598–4601 (2009).

    Article  Google Scholar 

  24. Cao, L. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318–11319 (2007).

    Article  Google Scholar 

  25. Cao, L. et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc. 133, 4754–4757 (2011).

    Article  Google Scholar 

  26. Wang, F., Chen, Y-H., Liu, C-Y. & Ma, D-G. White light-emitting devices based on carbon dots' electroluminescence. Chem. Commun. 47, 3502–3504 (2011).

    Article  Google Scholar 

  27. Krysmann, M. J., Kelarakis, A., Dallas, P. & Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747–750 (2011).

    Article  Google Scholar 

  28. Neugart, F. et al. Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7, 3588–3591 (2007).

    Article  ADS  Google Scholar 

  29. Peng, J. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012).

    Article  ADS  Google Scholar 

  30. Selvi, B. R. et al. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 8, 3182–3188 (2008).

    Article  ADS  Google Scholar 

  31. Wang, X. et al. Photoinduced electron transfers with carbon dots. Chem. Commun. 3774–3776 (2009).

  32. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    Article  ADS  Google Scholar 

  33. Kim, J-S., Friend, R. H., Grizzi, I. & Burroughes, J. H. Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes. Appl. Phys. Lett. 87, 023506 (2005).

    Article  ADS  Google Scholar 

  34. Kim, H., Schulte, N., Zhou, G., Müllen, K. & Laquai, F. A high gain and high charge carrier mobility indenofluorene–phenanthrene copolymer for light amplification and organic lasing. Adv. Mater. 23, 894–897 (2011).

    Article  Google Scholar 

  35. Wang, D. et al. One- and two-photon absorption induced emission in HMASPS doped polymer. Chem. Phys. Lett. 354, 423–427 (2002).

    Article  ADS  Google Scholar 

  36. Namdas, E. B. et al. Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers. Adv. Mater. 21, 799–802 (2009).

    Article  Google Scholar 

  37. Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Article  Google Scholar 

  38. Slooff, L. H. et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Appl. Phys. Lett. 90, 143506 (2007).

    Article  ADS  Google Scholar 

  39. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the WCU (World Class University) programme through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (R31-2008-000-20012-0), the National Research Foundation of Korea (grant 2009-0093020), the Korea Healthcare technology R&D Project, Ministry of Health & Welfare, Korea (A091047), and an International Cooperation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Knowledge Economy (2012T100100740). The authors thank H-J. Shin for performing kelvin probe force microscopy for work function measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.C. designed and conducted most of the experiments, analysed the data and prepared the manuscript. S-J.K. performed PLEDs fabrication and characterization. T.K. and B.R.L. helped with the PLEDs fabrication experiments. Y.C. and P.J. contributed to the synthesis of carbon dots and characterization of CD–Ag nanoparticles by TEM, XPS and Raman spectroscopy. J-W.J. and J-R.J. performed FDTD calculations of the electric-field distribution of the CD–Ag nanoparticles. H.J.C. and M.C. contributed to ASE measurement. M.H.S. helped with interpreting data about PLEDs and ASE measurements. I-W.H. contributed to TCSPC measurements and data analysis. J.Y.K. and B-S.K. initiated the study, designed all the experiments, analysed the data and prepared the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Byeong-Su Kim or Jin Young Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Ko, SJ., Choi, Y. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photon 7, 732–738 (2013). https://doi.org/10.1038/nphoton.2013.181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing