Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optomechanical device actuation through the optical gradient force

Abstract

Optical forces are widely used to manipulate microparticles such as living cells, DNA and bacteria. The forces used in these 'optical tweezers' originate from the strongly varying electromagnetic field in the focus of a high-power laser beam. This field gradient polarizes the particle, causing the positively and negatively charged sides of the dipole to experience slightly different forces. It was recently realized that the strong field gradient in the near-field of guided wave structures can also be exploited for actuating optomechanical devices, and initial theoretical work in this area was followed rapidly by several experimental demonstrations. This Review summarizes the rapid development in this field. First, the origin of the optical gradient force is discussed in detail. Several experimental demonstrations and approaches for enhancing the strength of the effect are then discussed. Finally, some of the possible applications of the effect are reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The optical gradient force acting on integrated waveguide structures.
Figure 2: The pressure between two slab waveguides excited with a symmetric (attractive) or antisymmetric (repulsive) mode as function of their separation.
Figure 4: Recent optomechanically driven nanostructures.
Figure 3: Measurement and calibration procedure.
Figure 5: Static and dynamic response of a double-disk resonator.

Similar content being viewed by others

References

  1. Chu, S. Laser manipulation of atoms and particles. Science 253, 861–866 (1991).

    Article  ADS  Google Scholar 

  2. Braginsky, V. B. & Manukin, A. B. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977).

    Google Scholar 

  3. Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  4. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  5. Braginsky, V. B., Strigin, S. E. & Vyatchanin, S. P. Parametric oscillatory instability in Fabry–Pérot interferometer. Phys. Lett. A 287, 331–338 (2001).

    Article  ADS  Google Scholar 

  6. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  7. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  8. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  Google Scholar 

  9. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  10. Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009).

    Article  ADS  Google Scholar 

  11. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  12. Chaumet, P. C. & Nieto-Vesperinas, M. Optical binding of particles with or without the presence of a flat dielectric surface. Phys. Rev. B 64, 035422 (2001).

    Article  ADS  Google Scholar 

  13. Nieto-Vesperinas, M., Chaumet, P. C. & Rahmani, A. Near-field photonic forces. Phil. Trans. R. Soc. Lond. Ser. A 362, 719–737 (2004).

    Article  ADS  Google Scholar 

  14. Rahmani, A. & Chaumet, P. C. Optical trapping near a photonic crystal. Opt. Express 14, 6353–6358 (2006).

    Article  ADS  Google Scholar 

  15. Povinelli, M. et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt. Express 13, 8286–8295 (2005).

    Article  ADS  Google Scholar 

  16. Povinelli, M. L. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005).

    Article  ADS  Google Scholar 

  17. Notomi, M., Taniyama, H., Mitsugi, S. & Kuramochi, E. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006).

    Article  ADS  Google Scholar 

  18. Novotny, L. & Hecht, B. Principles of nano-optics, Ch. 13 (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  19. Rakich, P. T., Popovic, M. A. & Wang, Z. General treatment of optical forces and potentials in mechanically variable photonic systems. Opt. Express 17, 18116–18135 (2009).

    Article  ADS  Google Scholar 

  20. Pernice, W. H. P., Li, M. & Tang, H. X. Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Opt. Express 17, 1806–1816 (2009).

    Article  ADS  Google Scholar 

  21. Vassallo, C. Optical Waveguide Concepts (Elsevier, 1991).

    Google Scholar 

  22. Riboli, F., Recati, A., Antezza, M. & Carusotto, I. Radiation induced force between two planar waveguides. Eur. Phys. J. D 46, 157–164 (2008).

    Article  ADS  Google Scholar 

  23. Wiederhecker, G. S. et al. Field enhancement within an optical fibre with a subwavelength air core. Nature Photon. 1, 115–118 (2007).

    Article  ADS  Google Scholar 

  24. Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

    Article  ADS  Google Scholar 

  25. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    Article  ADS  Google Scholar 

  26. Selvaraja, S. K. et al. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. Lightwave Tech. 27, 4076–4083 (2009).

    Article  ADS  Google Scholar 

  27. Li, M., Pernice, W. H. P. & Tang, H. X. Tunable bipolar optical interactions between guided lightwaves. Nature Photon. 3, 464–468 (2009).

    Article  ADS  Google Scholar 

  28. Roels, J. et al. Tunable optical forces between nanophotonic waveguides. Nature Nanotech. 4, 510–513 (2009).

    Article  ADS  Google Scholar 

  29. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966).

    Article  ADS  Google Scholar 

  30. Rosenberg, J., Lin, Q. & Painter, O. Static and dynamic wavelength routing via the gradient optical force. Nature Photon. 3, 478–483 (2009).

    Article  ADS  Google Scholar 

  31. Hauss, H. A. Waves and Fields in Optoelectronics (Prentice Hall, 1983).

    Google Scholar 

  32. Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. & Laine, J.-P. Microring resonator channel dropping filters. IEEE J. Lightwave Tech. 15, 998–1005 (1997).

    Article  ADS  Google Scholar 

  33. Eichenfield, M., Michael, C. P., Perahia, R. & Painter, O. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416–422 (2007).

    Article  ADS  Google Scholar 

  34. Pernice, W. H. P., Li, M. & Tang, H. X. Optomechanical coupling in photonic crystal supported nanomechanical waveguides. Opt. Express 17, 12424–12432 (2009).

    Article  ADS  Google Scholar 

  35. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009).

    Article  ADS  Google Scholar 

  36. Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008).

    Article  ADS  Google Scholar 

  37. Ng, J., Chan, C. T., Sheng, P. & Lin, Z. Strong optical force induced by morphology-dependent resonances. Opt. Lett. 30, 1956–1958 (2005).

    Article  ADS  Google Scholar 

  38. Ward, J. M., Wu, Y., Minogin, V. G. & Chormaic, S. N. Trapping of a microsphere pendulum resonator in an optical potential. Phys. Rev. A 79, 053839 (2009).

    Article  ADS  Google Scholar 

  39. Rakich, P., Popović, M. A., Soljačić, M. & Ippen, E. P. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nature Photon. 1, 658–665 (2007).

    Article  ADS  Google Scholar 

  40. Wiederhecker, G. S., Chen, L., Gondarenko, A. & Lipson, M. Controlling photonic structures using optical forces. Nature 462, 633–636 (2009).

    Article  ADS  Google Scholar 

  41. Jiang, X., Lin, Q., Rosenberg, J., Vahala, K. & Painter, O. High-Q double-disk microcavities for cavity optomechanics. Opt. Express 17, 20911–20919 (2009).

    Article  ADS  Google Scholar 

  42. Gan, F. et al. in Photonics in Switching 2007, 67–68 (IEEE, 2007).

    Google Scholar 

  43. Christiaens, I., Van Thourhout, D. & Baets, R. Low-power thermo-optic tuning of vertically coupled microring resonators. Electron. Lett. 40, 560–561 (2004).

    Article  Google Scholar 

  44. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

    Article  ADS  Google Scholar 

  45. Lin, Q., Rosenberg, J., Jiang, X., Vahala, K. J. & Painter, O. Mechanical oscillation and cooling actuated by the optical gradient force. Phys. Rev. Lett. 103, 103601 (2009).

    Article  ADS  Google Scholar 

  46. Camacho, R. M., Chan, J., Eichenfield, M. & Painter, O. Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Opt. Express 17, 15726–15735 (2009).

    Article  ADS  Google Scholar 

  47. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  ADS  Google Scholar 

  48. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  ADS  Google Scholar 

  49. Karabacak, D., Kouh, T. & Ekinci, K. L. Analysis of optical interferometric displacement detection in nanoelectromechanical systems. J. Appl. Phys. 98, 124309 (2005).

    Article  ADS  Google Scholar 

  50. De Vlaminck, I. et al. Detection of nanomechanical motion by evanescent light wave coupling. Appl. Phys. Lett. 90, 233116 (2007).

    Article  ADS  Google Scholar 

  51. Li, M., Pernice, W. H. P. & Tang, H. X. Broadband all-photonic transduction of nanocantilevers. Nature Nanotech. 4, 377–382 (2009).

    Article  ADS  Google Scholar 

  52. Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).

    Article  ADS  Google Scholar 

  53. Marris-Morini, D. et al. Optical modulation by carrier depletion in a silicon PIN diode. Opt. Express 14, 10838–10843 (2006).

    Article  ADS  Google Scholar 

  54. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  55. Bhattacharya, M., Uys, H. & Meystre, P. Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A 77, 033819 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dries Van Thourhout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Thourhout, D., Roels, J. Optomechanical device actuation through the optical gradient force. Nature Photon 4, 211–217 (2010). https://doi.org/10.1038/nphoton.2010.72

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing