Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical trapping of an ion

Abstract

Isolating ions and atoms from the environment is essential in experiments on a quantum level1,2,3,4. For decades, this has been achieved by trapping ions with radiofrequency5 fields and neutral particles with optical fields6. Here we demonstrate the trapping of an ion by interaction with light. The lifetime in the optical trap is several milliseconds, allowing hundreds of oscillations in the optical potential, and could be enhanced by established methods6. These results could form the starting point for combining the advantages of optical trapping and ions. Extending the approach to optical lattices could support developments in experimental quantum simulations7. As well as simulating complex spin systems with trapped ions, a new class of quantum simulations could be enabled that combines atoms and ions in a common lattice (Cirac, J.I., personal communication; Zoller, P., personal communication). Furthermore, ions could be embedded into quantum degenerate gases, thereby avoiding the inevitable excess kinetic energy of ions in radiofrequency traps, which currently limits cold-chemistry experiments8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two alternative trapping setups.
Figure 2: Optical trapping probability P as a function of dipole trap duration Toptical.
Figure 3: Optical trapping probability P as a function of power Poptical of the dipole trap beam.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge Univ. Press, 2000).

  2. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  3. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  4. Weiner, J., Bagnato, V. S., Zilio, S. & Julienne, P. S. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999).

    Article  ADS  Google Scholar 

  5. Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).

    Article  ADS  Google Scholar 

  6. Phillips, W. D. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  Google Scholar 

  7. Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    Article  ADS  Google Scholar 

  8. Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    Article  ADS  Google Scholar 

  9. Zipkes, C., Palzer, S., Sias, C. & Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010).

    Article  ADS  Google Scholar 

  10. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    Article  ADS  Google Scholar 

  11. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008).

    Article  ADS  Google Scholar 

  12. Schmied, R., Wesenberg, J. H. & Leibfried, D. Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 233002 (2009).

    Article  ADS  Google Scholar 

  13. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    Article  ADS  Google Scholar 

  14. Volz, T. et al. Preparation of a quantum state with one molecule at each site of an optical lattice. Nature Phys. 2, 692–695 (2006).

    Article  ADS  Google Scholar 

  15. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  16. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

    Article  Google Scholar 

  17. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  18. Schaetz, T., Friedenauer, A., Schmitz, H., Petersen, L. & Kahra, S. Towards (scalable) quantum simulations in ion traps. J. Mod. Opt. 54, 2317–2325 (2007).

    Article  ADS  Google Scholar 

  19. Drakoudis, A., Söllner, M. & Werth, G. Instabilities of ion motion in a linear Paul trap. Int. J. Mass Spectrom. 252, 61–68 (2006).

    Article  Google Scholar 

  20. Friedenauer, A. et al. High power all solid state laser system near 280 nm. Appl. Phys. B 84, 371–373 (2006).

    Article  ADS  Google Scholar 

  21. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. Atom. Mol. Opt. Phys. 42, 95–170 (2000).

    Article  ADS  Google Scholar 

  22. Tuchendler, C., Lance, A. M., Browaeys, A., Sortais, Y. R. P. & Grangier, P. Energy distribution and cooling of a single atom in an optical tweezer. Phys. Rev. A 78, 033425 (2008).

    Article  ADS  Google Scholar 

  23. Gordon, J. P. & Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606–1617 (1980).

    Article  ADS  Google Scholar 

  24. Feng, Y., Taylor, L. R. & Calia, D. B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. Opt. Express 17, 19021–19026 (2009).

    Article  ADS  Google Scholar 

  25. Leibrandt, D. R., Labaziewicz, J., Vuletić, V. & Chuang, I. L. Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009).

    Article  ADS  Google Scholar 

  26. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000).

    Article  ADS  Google Scholar 

  27. Schmied, R., Roscilde, T., Murg, V., Porras, D. & Cirac, J. I. Quantum phases of trapped ions in an optical lattice. New J. Phys. 10, 045017 (2008).

    Article  ADS  Google Scholar 

  28. Kollath, C., Köhl, M. & Giamarchi, T. Scanning tunneling microscopy for ultracold atoms. Phys. Rev. A 76, 063602 (2007).

    Article  ADS  Google Scholar 

  29. Gehm, M. E., O'Hara, K. M., Savard, T. A. & Thomas, J. E. Dynamics of noise-induced heating in atom traps. Phys. Rev. A 58, 3914–3921 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Max-Planck-Institut für Quantenoptik (MPQ), Max-Planck-Gesellschaft (MPG), Deutsche Forschungsgemeinschaft (DFG) (SCHA 973/1-6), the European Commission (The Physics of Ion Coulomb Crystals: FP7 2007–2013. grant no. 249958) and the DFG Cluster of Excellence ‘Munich Centre for Advanced Photonics’. The authors thank H. Schmitz and R. Matjeschk for preliminary work, K. Murr and R. Schmied for helpful discussions, and D. Leibfried and S. Dürr additionally for comments and suggestions regarding our manuscript. Thanks also go to I. Cirac and G. Rempe for their great intellectual and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schaetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C., Enderlein, M., Huber, T. et al. Optical trapping of an ion. Nature Photon 4, 772–775 (2010). https://doi.org/10.1038/nphoton.2010.236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing