Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids

Abstract

Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron–hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of PbSe QD solids.
Figure 2: Ultrafast response of QD solids to optical excitation.
Figure 3: TRMC photoconductivity of a PbSe QD solid at room temperature.
Figure 4: Temperature dependence of photoconductivity.
Figure 5: Dependence of the quantum yield of charge carrier photogeneration on temperature in the Onsager–Braun model.
Figure 6: Schematic of distribution of electronic states for a QD and its 12 nearest neighbours (as in a close-packed lattice).

Similar content being viewed by others

References

  1. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  2. Hansen, J. A. et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 128, 2228–2229 (2006).

    Article  CAS  Google Scholar 

  3. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  4. Coe, S., Woo, W. K., Bawendi, M. & Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  CAS  Google Scholar 

  5. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  6. Leschkies, K. S., Beatty, T. J., Kang, M. S., Norris, D. J. & Aydil, E. S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano 3, 3638–3648 (2009).

    Article  CAS  Google Scholar 

  7. Choi, J. J. et al. PbSe nanocrystal excitonic solar cells. Nano Lett. 9, 3749–3755 (2009).

    Article  CAS  Google Scholar 

  8. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  CAS  Google Scholar 

  9. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    Article  CAS  Google Scholar 

  10. Ma, W., Luther, J. M., Zheng, H. M., Wu, Y. & Alivisatos, A. P. Photovoltaic devices employing ternary PbSxSe1–x nanocrystals. Nano Lett. 9, 1699–1703 (2009).

    Article  CAS  Google Scholar 

  11. Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).

    Article  CAS  Google Scholar 

  12. Ginger, D. S. & Greenham, N. C. Charge injection and transport in films of CdSe nanocrystals. J. Appl. Phys. 87, 1361–1368 (2000).

    Article  CAS  Google Scholar 

  13. Yu, D., Wang, C. J. & Guyot-Sionnest, P. n-Type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    Article  CAS  Google Scholar 

  14. Lee, J-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    Article  CAS  Google Scholar 

  15. Tang, J. A. & Sargent, E. H. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv. Mater. 23, 12–29 (2011).

    Article  CAS  Google Scholar 

  16. Jarosz, M. V., Porter, V. J., Fisher, B. R., Kastner, M. A. & Bawendi, M. G. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency. Phys. Rev. B 70, 195327 (2004).

    Article  Google Scholar 

  17. Loef, R., Houtepen, A. J., Talgorn, E., Schoonman, J. & Goossens, A. Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells. Nano Lett. 9, 856–859 (2009).

    Article  CAS  Google Scholar 

  18. Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010).

    Article  CAS  Google Scholar 

  19. Trinh, M. T. et al. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713–1718 (2008).

    Article  Google Scholar 

  20. Trinh, M. T. et al. Anomalous independence of multiple exciton generation on different group IV–VI quantum dot architectures. Nano Lett. 11, 1623–1629 (2011).

    Article  CAS  Google Scholar 

  21. Luther, J. M. et al. Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2, 271–280 (2008).

    Article  CAS  Google Scholar 

  22. Wolcott, A. et al. Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids. J. Phys. Chem. Lett. 2, 795–800 (2011).

    Article  CAS  Google Scholar 

  23. Dollefeld, H., Weller, H. & Eychmuller, A. Particle–particle interactions in semiconductor nanocrystal assemblies. Nano Lett. 1, 267–269 (2001).

    Article  Google Scholar 

  24. Artemyev, M. V., Woggon, U., Jaschinski, H., Gurinovich, L. I. & Gaponenko, S. V. Spectroscopic study of electronic states in an ensemble of close-packed CdSe nanocrystals. J. Phys. Chem. B 104, 11617–11621 (2000).

    Article  CAS  Google Scholar 

  25. Moreels, L. et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 6101–6106 (2007).

    Article  CAS  Google Scholar 

  26. Talgorn, E. et al. Highly photoconductive CdSe quantum-dot films: influence of capping molecules and film preparation procedure. J. Phys. Chem. C 114, 3441–3447 (2010).

    Article  CAS  Google Scholar 

  27. Talgorn, E. et al. Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2 . ACS Nano 4, 1723–1731 (2010).

    Article  CAS  Google Scholar 

  28. Trinh, M. T., Houtepen, A. J., Schins, J. M., Piris, J. & Siebbeles, L. D. A. Nature of the second optical transition in PbSe nanocrystals. Nano Lett. 8, 2112–2117 (2008).

    Article  CAS  Google Scholar 

  29. Dakovski, G. L., Lan, S., Xia, C. & Shan, J. Terahertz electric polarizability of excitons in PbSe and CdSe quantum dots. J. Phys. Chem. C 111, 5904–5908 (2007).

    Article  CAS  Google Scholar 

  30. Murphy, J. E., Beard, M. C. & Nozik, A. J. Time-resolved photoconductivity of PbSe nanocrystal arrays. J. Phys. Chem. B 110, 25455–25461 (2006).

    Article  CAS  Google Scholar 

  31. Schins, J. M. Thin-sample limit for time-resolved terahertz spectroscopy. Appl. Phys. Lett. 97, 1772110–1772112 (2010).

    Article  Google Scholar 

  32. Savenije, T. J., de Haas, M. P. & Warman, J. M. The yield and mobility of charge carriers in smooth and nanoporous TiO2 films. Z. Phys. Chem. 212, 201–206 (1999).

    Article  CAS  Google Scholar 

  33. Liu, Y. et al. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 10, 1960–1969 (2010).

    Article  CAS  Google Scholar 

  34. Romero, H. E. & Drndic, M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 95, 156801 (2005).

    Article  Google Scholar 

  35. Yu, D., Wang, C. J., Wehrenberg, B. L. & Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 92, 216802 (2004).

    Article  Google Scholar 

  36. Houtepen, A. J., Kockmann, D. & Vanmaekelbergh, D. Reappraisal of variable-range hopping in quantum-dot solids. Nano Lett. 8, 3516–3520 (2008).

    Article  CAS  Google Scholar 

  37. Roest, A. L., Houtepen, A. J., Kelly, J. J. & Vanmaekelbergh, D. Electron-conducting quantum-dot solids with ionic charge compensation. Faraday Discuss. 125, 55–62 (2004).

    Article  CAS  Google Scholar 

  38. Mentzel, T. S. et al. Charge transport in PbSe nanocrystal arrays. Phys. Rev. B 77, 075316 (2008).

    Article  Google Scholar 

  39. Chandler, R. E., Houtepen, A. J., Nelson, J. & Vanmaekelbergh, D. Electron transport in quantum dot solids: Monte Carlo simulations of the effects of shell filling, Coulomb repulsions, and site disorder. Phys. Rev. B 75, 085325 (2007).

    Article  Google Scholar 

  40. Braun, C. L. Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier generation. J. Chem. Phys. 80, 4157–4161 (1984).

    Article  CAS  Google Scholar 

  41. Bruggeman, D. A. G. Calculation of various physics constants in heterogenous substances. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636–664 (1935).

    Article  CAS  Google Scholar 

  42. Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    Article  CAS  Google Scholar 

  43. Delerue, C. & Lannoo, M. Nanostructures: Theory and Modelling (Springer-Verlag, 2004).

    Book  Google Scholar 

  44. Wehrenberg, B. L., Wang, C. J. & Guyot-Sionnest, P. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 106, 10634–10640 (2002).

    Article  CAS  Google Scholar 

  45. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  CAS  Google Scholar 

  46. Smith, B. B. & Nozik, A. J. Theoretical studies of electronic state localization and wormholes in silicon quantum dot arrays. Nano Lett. 1, 36–41 (2000).

    Article  Google Scholar 

  47. Pepper, M., Pollitt, S., Adkins, C. J. & Stradling, R. A. Anderson localization in silicon inversion layers. Crit. Rev. Solid State 5, 375–384 (1975).

    Article  CAS  Google Scholar 

  48. Kovalenko, M. V. et al. Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange-mediated nucleation. Angew. Chem. Int. Ed. 47, 3029–3033 (2008).

    Article  CAS  Google Scholar 

  49. Han, Y., Mayer, D., Offenhausser, A. & Ingebrandt, S. Surface activation of thin silicon oxides by wet cleaning and silanization. Thin Solid Films 510, 175–180 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by SenterNovem (project SELECT) and the Netherlands Organisation for Scientific Research (NWO), Division of Chemical Sciences (VICI award 700.53.443). The 3TU Centre for Sustainable Energy Technologies is acknowledged for financial support. A.J.H. acknowledges financial support through a NWO-VENI grant. The authors thank S. Patwardhan for useful discussions and M. Murra for the photograph of the film.

Author information

Authors and Affiliations

Authors

Contributions

E.T. and A.J.H. designed the experiment, analysed data and wrote the paper. E.T. performed TRMC experiments. Y.G. and M.A. synthesized the quantum dots and developed the film preparation procedure. Y.G. performed transient absorption measurements and simulations of the mobility. L.K. performed terahertz conductivity experiments. T.J.S. designed the temperature-dependent TRMC setup. J.M.S. developed the analytical deconvolution procedure. M.v.H. performed TEM experiments. H.S.J.v.d.Z. and L.D.A.S. gave conceptual advice.

Corresponding author

Correspondence to Arjan J. Houtepen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talgorn, E., Gao, Y., Aerts, M. et al. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. Nature Nanotech 6, 733–739 (2011). https://doi.org/10.1038/nnano.2011.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing