Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rare-earth solid-state qubits

Abstract

Quantum bits (qubits) are the basic building blocks of any quantum computer. Superconducting qubits have been created with a top-down approach that integrates superconducting devices into macroscopic electrical circuits1,2,3, and electron-spin qubits have been demonstrated in quantum dots4,5,6. The phase coherence time (τ2) and the single qubit figure of merit (QM) of superconducting and electron-spin qubits are similar — at τ2 µs and QM 10–1,000 below 100 mK — and it should be possible to scale up these systems, which is essential for the development of any useful quantum computer. Bottom-up approaches based on dilute ensembles of spins have achieved much larger values of τ2 (up to tens of milliseconds; refs 78), but these systems cannot be scaled up, although some proposals for qubits based on two-dimensional nanostructures should be scalable9,10,11. Here we report that a new family of spin qubits based on rare-earth ions demonstrates values of τ2 (50 µs) and QM (1,400) at 2.5 K, which suggests that rare-earth qubits may, in principle, be suitable for scalable quantum information processing at 4He temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy levels and Rabi frequencies for the erbium-doped RE system 167Er3+:CaWO4.
Figure 2: Rabi oscillations and coherence times.
Figure 3: Changing the damping time with the microwave power.
Figure 4: Maximum and minimum coupling of the microwave field to Er effective spins and direction-dependent Rabi frequencies.

Similar content being viewed by others

References

  1. Leggett, A. J. Superconducting qubits — a major roadblock dissolved? Science 296, 861–862 (2002).

    Article  CAS  Google Scholar 

  2. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–163 (2004).

    Article  CAS  Google Scholar 

  3. Pashkin, A., Astafiev, O., Nakamura, Y. & Tsai, J. S. Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941–944 (2003).

    Article  Google Scholar 

  4. Koppens, F. L. H. et al. Driven coherent oscillations at a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  5. Oosterkamp, T. H. et al. Microwave spectroscopy of a quantum-dot molecule. Nature 395, 873–876 (1998).

    Article  CAS  Google Scholar 

  6. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  7. Tyryshkin, A. M., Lyon, S. A., Astashkin, A. V. & Raitsimring, A. M. Electron spin relaxation times in phosphorous donors in silicon. Phys. Rev. B 68, 193207 (2003).

    Article  Google Scholar 

  8. Mehring, M., Scherer, W. & Weidinger, A. Pseudo-entanglement of spin states in the multilevel 15N@C60 system. Phys. Rev. Lett. 93, 206603 (2004).

    Article  CAS  Google Scholar 

  9. Vandersypen, L. M. K. et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001).

    Article  CAS  Google Scholar 

  10. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  11. Kane, B. E. A silicon based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  12. Thomas, L. et al. Macroscopic quantum tunneling of the magnetization in a single crystal of nanomagnets. Nature 383, 145–148 (1996)

    Article  CAS  Google Scholar 

  13. Giraud, R., Wernsdorfer, W., Tkatchuk, A., Mailly, D. & Barbara, B. Nuclear spin driven quantum relaxation in LiY0.998 Ho0.002 F4 . Phys. Rev. Lett. 87, 057203 (2001).

    Article  CAS  Google Scholar 

  14. Giraud, R., Tkachuk, A. M. & Barbara, B. Quantum dynamics of atomic magnets: co-tunneling and dipolar-biased-tunneling. Phys. Rev. Lett. 91, 257204 (2003).

    Article  CAS  Google Scholar 

  15. Stamp, P. C. E. & Tupitsyn, I. S. Coherence window in the dynamics of quantum nanomagnets. Phys. Rev. B 69, 014401 (2004).

    Article  Google Scholar 

  16. Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–655 (1937).

    Article  CAS  Google Scholar 

  17. Shakurov, G. S. et al. Direct measurement of anti-crossings of the electron-nuclear energy levels in LiYF4 : Ho with submillimeter EPR spectroscopy. Appl. Magn. Reson. 28, 251–265 (2005).

    Article  CAS  Google Scholar 

  18. Kurkin, I. N. & Shekun, L. Ya. Paramagnetic resonance linewidths for impurity ions in scheelite single crystals. Fiz. Tverd. Tela (Leningrad) 9, 444–448 (1967).

    CAS  Google Scholar 

  19. Shakhmuratov, R. N., Gelardi, F. M. & Cannas, M. Non-Bloch transients in solids: free induction decay and transient nutations. Phys. Rev. Lett. 79, 2963–2966 (1997).

    Article  CAS  Google Scholar 

  20. Agnello, S., Boscaino, R., Cannas, M., Gelardi, F. M. & Shakhmuratov, R. N. Transient nutation decay: the effect of field-modified dipolar interactions. Phys. Rev. A 59, 4087–4090 (1999).

    Article  CAS  Google Scholar 

  21. Prokof'ev, N. V. & Stamp, P. C. E. Theory of the spin-bath. Rep. Prog. Phys. 63, 669–726 (2000).

    Article  CAS  Google Scholar 

  22. Gallis, S. et al. Photoluminescence in erbium doped amorphous silicon oxycarbide thin films. Appl. Phys. Lett. 87, 091901 (2005).

    Article  Google Scholar 

  23. Hori, Y. et al. GaN quantum dots doped with Tb. Appl. Phys. Lett. 88, 53102 (2006).

    Article  Google Scholar 

  24. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  25. Leuenberger, M. N. & Loss, D. Grover algorithm for large nuclear spins in semiconductors. Phys. Rev. B 68, 165317 (2003).

    Article  Google Scholar 

  26. Tkachuk, A. M., Razumova, I. K., Malyshev, A. V. & Gapontsev, V. P. Population of lasing erbium in YLT : Er3+ crystals under upconversion cw LD pumping. J. Luminescence 94–95, 317–320 (2001).

    Article  Google Scholar 

  27. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaisu, Y. Lanthanide double-decker complexes functioning as magnets at single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

    Article  CAS  Google Scholar 

  28. Zhang, Y., Holzwarth, N. A. W. & Williams, R. T. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4 . Phys. Rev. B 57, 12738 (1998).

    Article  CAS  Google Scholar 

  29. Stevens, K. W. H. The theory of paramagnetic relaxation. Proc. Phys. Soc. London A65, 209–217 (1952).

    Article  Google Scholar 

  30. Bernal, E. G. Optical spectrum and magnetic properties of Er3+ in CaWO4 . J. Chem. Phys. 55, 2538–2549 (1971).

    Article  Google Scholar 

  31. Antipin, A. A. et al. Paramagnetic resonance and spin-lattice relaxation of Er3+ and Tb3+ ions in CaWO4 crystal lattice. Sov. Phys. Solid State 10, 468–474 (1968).

    Google Scholar 

  32. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).

    Google Scholar 

  33. Rowan, L. G., Hahn, E. L. & Mims, W. B. Electronic spin-echo envelope modulation. Phys. Rev. A 137, A61–A71 (1969).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of INTAS contract no. 2003/03-51-4943. B.M. and I.K. acknowledge the Ministry of Education and Science of the Russian Federation (project RNP 2.1.1.7348) and B.B. the interdisciplinary European Network of Excellence ‘MAGMANet’ for support during the first year of the research.

Author information

Authors and Affiliations

Authors

Contributions

A.T. provided the samples. S.B. and S.G. performed the experiments, and analysed and discussed them with A.S., I.K., B.M. and B.B. B.B. proposed this study and wrote the manuscript, which was commented on by all the authors.

Corresponding author

Correspondence to B. Barbara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertaina, S., Gambarelli, S., Tkachuk, A. et al. Rare-earth solid-state qubits. Nature Nanotech 2, 39–42 (2007). https://doi.org/10.1038/nnano.2006.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing