Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels

Abstract

Neurotransmitter release during action potentials is thought to require transient, localized [Ca2+]i as high as hundreds of micromolar near presynaptic release sites. Most experimental attempts to characterize the magnitude and time course of these Ca2+ domains involve optical methods that sample large volumes, require washout of endogenous buffers and often affect Ca2+ kinetics and transmitter release. Endogenous calcium-activated potassium (KCa) channels colocalize with presynaptic Ca2+ channels in Xenopus nerve–muscle cultures. We used these channels to quantify the rapid, dynamic changes in [Ca2+]i at active zones during synaptic activity. Confirming Ca2+-domain predictions, these KCa channels revealed [Ca2+]i over 100 μM during synaptic activity and much faster buildup and decay of Ca2+ domains than shown using other techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IK-Ca and EPSCs in response to different amounts of Ca2+ entry obtained by truncation of a calcium tail current (ICa).
Figure 2: Peak evokable IK-Ca and neurotransmitter release as a function of Ca2+ entry during a calcium tail current (from experiment in Fig. 1).
Figure 3: Calibration of average [Ca2+]AZ near KCa channels during Ca2+ transients.
Figure 4: ICa, IK-Ca, calculated [Ca2+] and EPSC magnitude as a function of time during a simulated action potential.
Figure 5: Ca2+ concentration changes and transmitter release at different rates of Ca2+ entry.

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, Illinois, 1969).

    Google Scholar 

  2. Simon, S. M. & Llinás, R. R. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48, 485–498 (1985).

    Article  CAS  Google Scholar 

  3. Zucker, R. S. & Fogelson, A. L. Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proc. Natl. Acad. Sci. USA 83, 3032–3036 (1986).

    Article  CAS  Google Scholar 

  4. Sheng, Z. H., Westenbroek, R. E. & Catterall, W. A. Physical link and functional coupling of presynaptic calcium channels and the synaptic vesicle docking/fusion machinery. J. Bioenerg. Biomembr. 30, 335–345 (1998).

    Article  CAS  Google Scholar 

  5. Kim, D. K. & Catterall, W. A. Ca2+-dependent and-independent interactions of the isoforms of the alpha 1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc. Natl. Acad. Sci. USA 94, 14782–14786 (1997).

    Article  CAS  Google Scholar 

  6. Wiser, O. et al. The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc. Natl. Acad. Sci. USA 96, 248–253 (1999).

    Article  CAS  Google Scholar 

  7. Rettig, J. et al. Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J. Neurosci. 17, 6647–6656 (1997).

    Article  CAS  Google Scholar 

  8. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  Google Scholar 

  9. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994).

    Article  CAS  Google Scholar 

  10. Chad, J. E. & Eckert, R. Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. Biophys. J. 45, 993–999 (1984).

    Article  CAS  Google Scholar 

  11. Simon, S. M. & Llinás, R. F. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48, 485–498 (1985).

    Article  CAS  Google Scholar 

  12. Fogelson, A. L. & Zucker, R. S. Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys. J. 48, 1003–1017 (1985).

    Article  CAS  Google Scholar 

  13. Parnas, H., Hovav, G. & Parnas, I. Effect of Ca2+ diffusion on the time course of neurotransmitter release. Biophys. J . 55, 859–874 (1989).

    Article  CAS  Google Scholar 

  14. Yamada, W. M. & Zucker, R. S. Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys. J. 61, 671–682 (1992).

    Article  CAS  Google Scholar 

  15. Roberts, W. M. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J. Neurosci. 14, 3246–3262 (1994).

    Article  CAS  Google Scholar 

  16. Wu, Y.-C., Tucker, T. & Fettiplace, R. A theoretical study of calcium microdomains in turtle hair cells. Biophys. J. 71, 2256–2275 (1996).

    Article  CAS  Google Scholar 

  17. Klingauf, J. & Neher, E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys. J. 72, 674–690 (1997).

    Article  CAS  Google Scholar 

  18. Llinás, R. R., Sugimori, M. & Silver, R. B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    Article  Google Scholar 

  19. Llinás, R. R., Sugimori, M. & Silver, R. B. The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology 34, 1443–1451 (1995).

    Article  Google Scholar 

  20. DiGregorio, D. A. & Vergara, J. L. Localized detection of action potential-induced presynaptic calcium transients at a Xenopus neuromuscular junction. J. Physiol. (Lond.) 505, 585–592 (1997).

    Article  CAS  Google Scholar 

  21. DiGregorio, D. A., Peskoff, A. & Vergara, J. L. Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J. Neurosci. 19, 7846–7859 (1999).

    Article  CAS  Google Scholar 

  22. Rudy, B. Diversity and ubiquity of K channels. Neuroscience 25, 729–749 (1988).

    Article  CAS  Google Scholar 

  23. Yazejian, B. et al. Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve–muscle synapses. J. Neurosci. 17, 2990–3001 (1997).

    Article  CAS  Google Scholar 

  24. Hudspeth, A. J. & Lewis, R. S. Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bullfrog, Rana catesbeiana. J. Physiol. (Lond.) 400, 237–274 (1988).

    Article  CAS  Google Scholar 

  25. Roberts, W. M., Jacobs, R. A. & Hudspeth, A. J. Co-localization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10, 3664–3684 (1990).

    Article  CAS  Google Scholar 

  26. Roberts, W. M. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J. Neurosci. 14, 3246–3262 (1994).

    Article  CAS  Google Scholar 

  27. Art, J. J., Wu, Y.-C. & Fettiplace, R. The calcium-activated potassium channels of turtle hair cells. J. Gen. Physiol. 105, 49–72 (1995).

    Article  CAS  Google Scholar 

  28. Prakriya, M, Solaro, C. R. & Lingle, C. J. [Ca2+]i elevations detected by BK channels during Ca2+ influx and muscarine-mediated release of Ca2+ from intracellular stores in rat chromaffin cells. J. Neurosci. 16, 4344–4359 (1996).

    Article  CAS  Google Scholar 

  29. Sakaba, T., Ishikane, H. & Tachibana, M. Ca2+-activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neurosci. Res. 27, 219–228 (1997).

    Article  CAS  Google Scholar 

  30. Blundon, J. A., Wright, S. N., Brodwick, M. S. & Bittner, G. D. Residual free calcium is not responsible for facilitation of neurotransmitter release. Proc. Natl. Acad. Sci. USA 90, 9388–9392 (1993).

    Article  CAS  Google Scholar 

  31. Blundon, J. A., Wright, S. N., Brodwick, M. S. & Bittner, G. D. Presynaptic calcium-activated potassium channels and calcium channels at a crayfish neuromuscular junction. J. Neurophysiol. 73, 178–189 (1995).

    Article  CAS  Google Scholar 

  32. Galvez, A. et al. Purification and characterization of a unique, potent, peptidyl probe for the high-conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J. Biol. Chem. 265, 11083–11090 (1990).

    CAS  PubMed  Google Scholar 

  33. McCleskey, E. W. et al. ω-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. USA 84, 4327–4331 (1987).

    Article  CAS  Google Scholar 

  34. McManus, O. B. Calcium-activated potassium channels: Regulation by calcium. J. Bioenerg. Biomembr. 23, 537–560 (1991).

    Article  CAS  Google Scholar 

  35. Dodge, F. A. Jr. & Rahamimoff, R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  36. Heuser, J. E. & Reese, T. S. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580 (1981).

    Article  CAS  Google Scholar 

  37. Pawson, P. A., Grinnell, A. D. & Wolowske, B. Quantitative freeze-fracture analysis of the frog neuromuscular junction synapse. I. Naturally occurring variability in active zone structure. J. Neurocytol. 27, 361–377 (1998).

    Article  CAS  Google Scholar 

  38. Roberts, W. M., Jacobs, R. A. & Hudspeth, A. J. Co-localization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10, 3664–3684 (1990).

    Article  CAS  Google Scholar 

  39. Marrion, N. V. & Tavalin, S. J. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900–905 (1998).

    Article  CAS  Google Scholar 

  40. Spitzer, N. C. & Lamborghini, J. E. The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl. Acad. Sci. USA 73, 1641–1645 (1976).

    Article  CAS  Google Scholar 

  41. Tabti, N. & Poo, M.-M. in Culturing Nerve Cells (eds. Banker, G. & Goslin, K.) 137–153 (MIT Press, Cambridge, Massachusetts, 1991).

    Google Scholar 

  42. Weldon, P. R. & Cohen, M. W. Development of synaptic ultrastructure at neuromuscular contacts in an amphibian cell culture system. J. Neurocytol. 8, 239–259 (1979).

    Article  CAS  Google Scholar 

  43. Buchanan, J., Sun, Y.-A. & Poo, M.-M. Studies of nerve–muscle interactions in Xenopus cell culture: fine structure of early functional contacts. J. Neurosci. 9, 1540–1554 (1989).

    Article  CAS  Google Scholar 

  44. Watsky, M. A. & Rae, J. L. Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques. Invest. Ophthalmol. Vis. Sci. 32, 106–111 (1991).

    CAS  PubMed  Google Scholar 

  45. Hille, B. Ionic Channels of Excitable Membranes 2nd edn. 83–114 (Sinauer, Sunderland, Massachusetts, 1992).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH, NSF and the Spinal Cord Research Foundation. We thank M. Harvey for help with the experiments, A. Peskoff for expertise in Ca2+ domain modeling and E. Stefani, F. Bezanilla, D. DiGregorio and B. Edmonds for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Grinnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazejian, B., Sun, XP. & Grinnell, A. Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci 3, 566–571 (2000). https://doi.org/10.1038/75737

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing