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            Abstract
Successful navigation through the world requires accurate estimation of one's own speed. To derive this estimate, animals integrate visual speed gauged from optic flow and run speed gauged from proprioceptive and locomotor systems. The primary visual cortex (V1) carries signals related to visual speed, and its responses are also affected by run speed. To study how V1 combines these signals during navigation, we recorded from mice that traversed a virtual environment. Nearly half of the V1 neurons were reliably driven by combinations of visual speed and run speed. These neurons performed a weighted sum of the two speeds. The weights were diverse across neurons, and typically positive. As a population, V1 neurons predicted a linear combination of visual and run speeds better than either visual or run speeds alone. These data indicate that V1 in the mouse participates in a multimodal processing system that integrates visual motion and locomotion during navigation.




            
                
                    

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



                
            


            
                
                    
                

            

            
                
                
                
                
                    
                        This is a preview of subscription content, access via your institution

                    

                    
                

                

                Access options

                


                
                    
                        
                            

    
        
            
                
                Access through your institution
            
        

        
    



                        

                        

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



                    
                

                
    
    Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue

Learn more


Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Learn more


Prices may be subject to local taxes which are calculated during checkout



  

    
    
        
    Additional access options:

    	
            Log in
        
	
            Learn about institutional subscriptions
        
	
            Read our FAQs
        
	
            Contact customer support
        



    

                
                    Figure 1: Neuronal responses in V1 are strongly influenced by speed.[image: ]


Figure 2: Tuning of V1 neurons for run speed in the dark.[image: ]


Figure 3: V1 neurons are tuned for a weighted sum of run speed and virtual speed.[image: ]


Figure 4: V1 neuron population activity encodes positive combinations of virtual and run speeds.[image: ]
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Integrated supplementary information

Supplementary Figure 1 Distribution of running speeds.
a. Fraction of time spent running at different speeds while animals were in the virtual reality environment. The distributions when run speeds were sampled on a linear scale (left) or log scale (right). The data is shown as median ± median absolute deviation (n = 10). b. same as in a for animals exploring a real open-field environment (details described below). c. Comparison of the kurtosis of the distributions of speed in linear and log scales. Lower kurtosis implies that a distribution is closer to uniform. Because the kurtoses of run speed distributions were consistently lower when sampled on a logarithmic scale, we sampled speed on the log scale in this study. Although, this kurtoses in linear scale is an interesting aspect of the data, using the log scale allows us sample the data more evenly, and hence reduce any bias due to unequal sampling of the data. Open-field methods: 26 wild-type (C57BL6) mice were placed in a walled circular environment for 30 minutes. The environment was imaged using an overhead camera at 50 frames/sec and mouse movements were detected based the change in overall body position. Therefore, the resolution at lower speeds is limited (~1 cm/sec) unlike in the virtual reality environments. Data courtesy of Laurenz Muessig and Francesca Cacucci, UCL Institute of Behavioural Neuroscience.


Supplementary Figure 2 Raw traces from example recording session.
a. Example filtered (0.3 - 5 kHz) recording from 11 channels of the recording array. Spikes isolated across a group of channels (Chn 10-13) are highlighted with shaded regions. b. The waveforms of spikes on the group of channels highlighted in a.


Supplementary Figure 3 Interpreting the measure of fit quality.
a-b. Example tuning curves of two neurons for stimulus direction. Stimuli were drifting sinusoidal gratings (0.05 cycles/deg, 2 Hz). Curves are best fits of a double Gaussian (Carandini M, Ferster D, J Neurosci 20:470-484, 2000). Unlike runs through the virtual reality environment, these stimuli can be repeated multiple times. Error bars indicate ± s.e. (n = 10 repeats). c. Relationship between cross-validated explained variance, Q (calculated over individual trials), and explained variance (variance of the mean response explained). Each point corresponds to a cell (36 cells with Q>0). Cells in a and b are shown with the appropriate colors. Q>0.1 gives explained variance of 0.75 to 0.97 (0.87±0.07, mean ± s.d.). We can calculate the latter for direction tuning experiments but not for responses measured in virtual reality, because runs through the virtual reality environment are not exact repetitions of the same stimulus.


Supplementary Figure 4 Accurate estimation of firing rate as a function of position and speed.
To verify that our methods could accurately estimate how a neuron's firing rate depended on speed and position, we tested their ability to reproduce the known firing rate function of simulated neurons. Simulated spike trains were generated by running the trajectories taken by animals (e.g. Fig 1d) during each experimental session (identity labeled above the map) through the response map of the simulated neuron (shown on the left), and generating spikes from an inhomogeneous Poisson process with the corresponding rate function. We tested the methods used to calculate response maps (Fig. 1e-f), by using them to calculate the response map for each simulated session. We recovered accurate estimates of response maps in all our experimental sessions, showing a sufficient sampling of the stimulus space.


Supplementary Figure 5 Dependence of closed-loop responses on position and speed.
a-b. Responses of two example neurons (similar to Fig. 1e, f). c. Predictive power using position alone, compared to using the combination of position and speed. Solid dots indicate well-isolated units. d. Predictive power using speed alone, compared to using the combination of position and speed.


Supplementary Figure 6 Modulations in firing rate by different kinds of speed.
We defined the modulation in firing rate as 2(Rmax – Rmin) / (Rmax + Rmin), where Rmax and Rmin are the maximum and minimum firing rates measured in a tuning curve. a. Modulation in firing rate with respect to closed-loop speed for units considered in Fig. 1 (n = 110 with QPS>0.1). The black bars indicate well-isolated units, the gray bars the remainder of the units. Arrows in this and other panels indicate the values for cells used in the corresponding main text figures. b. Modulation of firing rate with respect to run speed in the dark condition (n = 70). c. Modulation of firing rate with respect to run speed for units considered in Fig. 3 (open-loop condition, n = 73 with QRV>0.1). d. Modulation of firing rate with respect to virtual speed for units considered in Fig. 3 (open-loop condition, n = 73 with QRV>0.1). e. Comparison of the modulation with respect to virtual speed and run speed in the open loop condition (n = 73). Filled symbols indicate well-isolated single units. Red dots indicate the three example cells in Fig. 3.


Supplementary Figure 7 Examples of band-pass tuning for run speed in the dark.
Additional examples of band-pass tuned neurons (similar to Fig. 2b).


Supplementary Figure 8 Consistency of closed-loop and open-loop responses.
a. The part of the open-loop response region where virtual speed matches run speed, as in the closed-loop condition, is highlighted in cyan. b-c. Dependence of firing rate on speed in the open and closed-loop conditions. Each panel is from an example neuron. Solid and dashed red curves show closed-loop responses from two periods of closed-loop stimulation in the same recording session (run immediately before and after the open-loop condition); the pink shaded area therefore indicates the range of measurement variability expected. The cyan curve shows the part of the open-loop response region indicated in a. d. Prediction of closed-loop responses from tuning curves measured in a second closed-loop session (QCL1↼CL2) compared to prediction from open-loop response maps (QCL1↼OL) (n=120). Solid dots indicate well-isolated units (n=31). e. Bar chart showing mean and standard error of prediction quality over recording sessions. Prediction of closed-loop spiking from the open-loop speed map was not significantly different from the prediction using speed tuning calculated in another closed-loop condition.


Supplementary Figure 9 Tuning for run speed is not altered by eye movements.
Eye position was measured by tracking the pupil using an infrared camera (DMK 21BU04.H, Imaging Source) equipped with a zoom lens (MVL7000, Thor Labs) and acquired at 60 frames/s using a custom software. We used custom image processing software written in MATLAB to detect eye movements. Briefly, within a region of interest, the contrast of the image was enhanced, the image smoothed and the negative image was thresholded to detect the pupil area. The detected pupil area was fit by an ellipse on every image and we tracked the center of this ellipse. a. Example image from the eye tracking camera. b. Pupil center position of an example session, overlaid over a representative image of a region of interest. Eye movements were larger in the horizontal direction than the vertical direction. c. Horizontal position as a function of time. Each row represents a run through the virtual reality environment. Eye movement events are detected as the movement of the pupil center by more than 2°, and the time of such events are marked as magenta dots. d-f. The response of three example neurons as the function of running speed, showing no effect of eye movements. To calculate the response of neurons in the absence of eye movements (magenta), the periods of -33 to +294 ms from all eye movement events were removed from the analysis. g. Comparison of the peak position (i.e. the speed of maximum firing rate) estimated with and without excluding eye movement events. The examples shown in d-f are highlighted. The peak speeds are jittered randomly (<1 cm/s) to see overlapping points. The strong relationship of the two measures indicates no effect of eye movements on speed tuning. h. Histogram showing the correlation between fits of the rate-speed response of each neuron with and without excluding eye movement events. The large peak at 1 indicates no effect of eye movements on speed tuning.


Supplementary Figure 10 Responses to virtual speed and run speed in open-loop.
Responses of 70 units (all units with QRV>0.1 except examples shown in Fig. 3b-d), to virtual speed (blue) and run speed (red) in the open-loop condition. Similar to the marginal responses shown in Fig. 3b-d.


Supplementary Figure 11 Prediction of speed from population activity using multiple decoders.
All curves show population decoding performance as a function of interaction angle θ using three different decoders: random forest decoder (number of trees <35; Breiman L, Mach Learn 45:5-32, 2001; Huber D, et al. Nature 484:473-478, 2012), linear population decoder (used in the main text; described in Methods) and neural-network decoder (feed-forward network with a single hidden layer; layer size <35, trained with Levenberg-Marquardt algorithm and implemented by the Neural Networks toolbox of Matlab). Speed < 1 cm/s are considered as stationary for these tests. a-f. Performance of the three algorithms for example sessions which had 20(a-c) or 11(d-f) recorded units. Error bars are cross-validation standard error. g-i. Decoding performance across all sessions (error bars are the ± s.e. across 11 sessions.


Supplementary Figure 12 Simulation of populations with various distributions of interaction angles.
a. Simulation method. The run speed and virtual speed were passed through the speed-tuning map of each model neuron, and independent Gaussian noise was added to generate the output. b. Examples of the tuning of model cells selective for different interaction angles (θ = 0, 45°, 90° and 135°). The tuning curve along any direction was modeled as a monotonically increasing function. c-i. The distribution of interaction angles of the simulated population (left) and the performance of a population decoder as a function of the interaction angle (right). c-f Decoder performance (Tree-based decoder) for a simulated population sharing an identical interaction angle. The decoder performs best for this angle, and performance drops to 0 for the orthogonal interaction angle. For example, when the population of neurons all encode virtual speed (θ = 0; panel c), the decoder gives no information about run speed (θ = 90°). g. When the population consists of a mixture of neurons encoding either virtual speed (θ = 0) or run speed (θ = 90o), the population decoder performs equally well for all interaction angles. h. The same is true when the population has neurons encoding a uniform distribution of interaction angles. i. The performance of a distribution of neurons that are diverse but biased towards equal weighting (θ = 45°) shows performance profile that is most similar to the real population of neurons. For all panels, the mean ± s.e. were calculated across experimental sessions, because the simulation was run for the virtual speed and run speed distribution of each session individually. j. Distribution of optimal interaction angles (left, same as Fig 3j) and decoder performance (right, similar to Fig 4d) for an actual recorded population. The lower speed limit was set at 0.03 cm/s, as in all the simulated models of this figure.
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