Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A mechanism for value-guided choice based on the excitation-inhibition balance in prefrontal cortex

Abstract

Although the ventromedial prefrontal cortex (vmPFC) has long been implicated in reward-guided decision making, its exact role in this process has remained an unresolved issue. Here we show that, in accordance with models of decision making, vmPFC concentrations of GABA and glutamate in human volunteers predict both behavioral performance and the dynamics of a neural value comparison signal. These data provide evidence for a neural competition mechanism in vmPFC that supports value-guided choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental task and correlation of spectroscopy data with behavior.
Figure 2: Relationship between GABA and glutamate and value difference slope.

Similar content being viewed by others

References

  1. Wunderlich, K., Rangel, A. & O'Doherty, J.P. Proc. Natl. Acad. Sci. USA 106, 17199–17204 (2009).

    Article  CAS  Google Scholar 

  2. Gershman, S.J., Pesaran, B. & Daw, N.D. J. Neurosci. 29, 13524–13531 (2009).

    Article  CAS  Google Scholar 

  3. Padoa-Schioppa, C. & Assad, J.A. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  4. Cai, X., Kim, S. & Lee, D. Neuron 69, 170–182 (2011).

    Article  CAS  Google Scholar 

  5. Boorman, E.D., Behrens, T.E., Woolrich, M.W. & Rushworth, M.F. Neuron 62, 733–743 (2009).

    Article  CAS  Google Scholar 

  6. Bechara, A., Tranel, D. & Damasio, H. Brain 123, 2189–2202 (2000).

    Article  Google Scholar 

  7. Ratcliff, R. & Rouder, J.N. Psychol. Sci. 9, 347–356 (1998).

    Article  Google Scholar 

  8. Wong, K.F. & Wang, X.J. J. Neurosci. 26, 1314–1328 (2006).

    Article  CAS  Google Scholar 

  9. Hunt, L.T. et al. Nat. Neurosci. 15, 470–476 (2012).

    Article  CAS  Google Scholar 

  10. Hare, T.A., Schultz, W., Camerer, C.F., O'Doherty, J.P. & Rangel, A. Proc. Natl. Acad. Sci. USA 108, 18120–18125 (2011).

    Article  CAS  Google Scholar 

  11. Stagg, C.J., Bachtiar, V. & Johansen-Berg, H. Curr. Biol. 21, 480–484 (2011).

    Article  CAS  Google Scholar 

  12. Schoenbaum, G., Roesch, M.R., Stalnaker, T.A. & Takahashi, Y.K. Nat. Rev. Neurosci. 10, 885–892 (2009).

    Article  CAS  Google Scholar 

  13. Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. Neuron 70, 1054–1069 (2011).

    Article  CAS  Google Scholar 

  14. Hasler, G. et al. Arch. Gen. Psychiatry 64, 193–200 (2007).

    Article  CAS  Google Scholar 

  15. Stagg, C.J. et al. J. Physiol. (Lond.) 589, 5845–5855 (2011).

    Article  CAS  Google Scholar 

  16. Deichmann, R., Gottfried, J.A., Hutton, C. & Turner, R. Neuroimage 19, 430–441 (2003).

    Article  CAS  Google Scholar 

  17. Tversky, A. & Kahneman, D. J. Risk Uncertain. 5, 297–323 (1992).

    Article  Google Scholar 

  18. Zhang, Y., Brady, M. & Smith, S. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    Article  CAS  Google Scholar 

  19. Smith, S.M. et al. Neuroimage 23 (suppl. 1), S208–S219 (2004).

    Article  Google Scholar 

  20. Boorman, E.D., Behrens, T.E., Woolrich, M.W. & Rushworth, M.F. Neuron 62, 733–743 (2009).

    Article  CAS  Google Scholar 

  21. Wang, X.J. Neuron 36, 955–968 (2002).

    Article  CAS  Google Scholar 

  22. Usher, M. & McClelland, J.L. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  Google Scholar 

  23. Ditterich, J., Mazurek, M.E. & Shadlen, M.N. Nat. Neurosci. 6, 891–898 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Research Career Development fellowship to T.E.J.B. (WT088312AIA). L.T.H. was supported by a 4-year D.Phil. studentship from the Wellcome Trust (WT080540MA). J.N. is supported by the UK Medical Research Council. We are very grateful to A. Soltani for providing the MATLAB code for the biophysical model. We thank S. Knight for his valuable help in data acquisition.

Author information

Authors and Affiliations

Authors

Contributions

G.J. designed the research, and acquired and analyzed the data. L.T.H. modified the biophysical model and analyzed the biophysical model predictions. J.N. acquired and analyzed MRS data. T.E.J.B. designed the research and analyzed the data. All authors were involved in writing the manuscript.

Corresponding author

Correspondence to Gerhard Jocham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2 (PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jocham, G., Hunt, L., Near, J. et al. A mechanism for value-guided choice based on the excitation-inhibition balance in prefrontal cortex. Nat Neurosci 15, 960–961 (2012). https://doi.org/10.1038/nn.3140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing