Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

APC/CFzr/Cdh1-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS

Abstract

Interactions between neurons and glia are a key feature during the assembly of the nervous system. During development, glial cells often follow extending axons, implying that axonal outgrowth and glial migration are precisely coordinated. We found that the anaphase-promoting complex/cyclosome (APC/C) co-activator fizzy-related/Cdh1 (Fzr/Cdh1) is involved in the non-autonomous control of peripheral glial migration in postmitotic Drosophila neurons. APC/CFzr/Cdh1 is a cell-cycle regulator that targets proteins that are required for G1 arrest for ubiquitination and subsequent degradation. We found that Fzr/Cdh1 function is mediated by the immunoglobulin superfamily cell adhesion molecule Fasciclin2 (Fas2). In motor neurons Fzr/Cdh1 is crucial for the establishment of a graded axonal distribution of Fas2. Axonal Fas2 interacts homophilically with a glial isoform of Fas2. Glial migration is initiated along axonal segments that have low levels of Fas2 but stalls in axonal domains with high levels of Fas2 on their surfaces. This represents a simple mechanism by which a subcellular gradient of adhesiveness can coordinate glial migration with axonal growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of fzr/cdh1 mutants.
Figure 2: Postmitotic Fzr/Cdh1 non-autonomously regulates glial cell migration.
Figure 3: Postmitotic APC/C acts in motor neurons to control glial migration.
Figure 4: Fzr/Chd1 regulates glial cell migration through the homophilic cell adhesion molecule Fas2.
Figure 5: Broad expression of fas2.
Figure 6: Fzr/Cdh1 regulates the graded expression of Fasciclin 2 at the onset of glial migration.
Figure 7: Disruption of the endocytic pathway disrupts glial migration and reduces the graded expression of Fas2.

Similar content being viewed by others

References

  1. Nave, K.A. & Trapp, B.D. Axon-glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Freeman, M.R. & Doherty, J. Glial cell biology in Drosophila and vertebrates. Trends Neurosci. 29, 82–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Halassa, M.M. & Haydon, P.G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72, 335–355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klämbt, C. Modes and regulation of glial migration in vertebrates and invertebrates. Nat. Rev. Neurosci. 10, 769–779 (2009).

    Article  PubMed  Google Scholar 

  5. Lyons, D.A. et al. erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr. Biol. 15, 513–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Gilmour, D.T., Maischein, H.M. & Nusslein-Volhard, C. Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34, 577–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Kucenas, S. et al. CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat. Neurosci. 11, 143–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sepp, K.J., Schulte, J. & Auld, V.J. Developmental dynamics of peripheral glia in Drosophila melanogaster. Glia 30, 122–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Silies, M. et al. Glial cell migration in the eye disc. J. Neurosci. 27, 13130–13139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von Hilchen, C.M., Beckervordersandforth, R.M., Rickert, C., Technau, G.M. & Altenhein, B. Identity, origin, and migration of peripheral glial cells in the Drosophila embryo. Mech. Dev. 125, 337–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Edenfeld, G. et al. Notch and Numb are required for normal migration of peripheral glia in Drosophila. Dev. Biol. 301, 27–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sepp, K.J. & Auld, V.J. RhoA and Rac1 GTPases mediate the dynamic rearrangement of actin in peripheral glia. Development 130, 1825–1835 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Edenfeld, G. et al. The splicing factor crooked neck associates with the RNA-binding protein HOW to control glial cell maturation in Drosophila. Neuron 52, 969–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Freeman, M.R., Delrow, J., Kim, J., Johnson, E. & Doe, C.Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. von Hilchen, C.M., Hein, I., Technau, G.M. & Altenhein, B. Netrins guide migration of distinct glial cells in the Drosophila embryo. Development 137, 1251–1262 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Sigrist, S.J. & Lehner, C.F. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Hummel, T., Schimmelpfeng, K. & Klämbt, C. Commissure formation in the embryonic CNS of Drosophila. Dev. Biol. 209, 381–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Reber, A., Lehner, C.F. & Jacobs, H.W. Terminal mitoses require negative regulation of Fzr/Cdh1 by Cyclin A, preventing premature degradation of mitotic cyclins and String/Cdc25. Development 133, 3201–3211 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Berger, C., Renner, S., Luer, K. & Technau, G.M. The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in the Drosophila embryonic CNS. Dev. Dyn. 236, 3562–3568 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Peters, J.M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gieffers, C., Peters, B.H., Kramer, E.R., Dotti, C.G. & Peters, J.M. Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons. Proc. Natl. Acad. Sci. USA 96, 11317–11322 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grenningloh, G., Rehm, E.J. & Goodman, C.S. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell 67, 45–57 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Maness, P.F. & Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat. Neurosci. 10, 19–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wright, J.W. & Copenhaver, P.F. Cell type–specific expression of fasciclin II isoforms reveals neuronal-glial interactions during peripheral nerve growth. Dev. Biol. 234, 24–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Higgins, M.R. et al. Different isoforms of fasciclin II are expressed by a subset of developing olfactory receptor neurons and by olfactory-nerve glial cells during formation of glomeruli in the moth Manduca sexta. Dev. Biol. 244, 134–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prag, S. et al. NCAM regulates cell motility. J. Cell Sci. 115, 283–292 (2002).

    CAS  PubMed  Google Scholar 

  29. Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G. N-CAM modulates tumor-cell adhesion to matrix by inducing FGF-receptor signaling. Nat. Cell Biol. 3, 650–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Paratcha, G., Ledda, F. & Ibanez, C.F. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113, 867–879 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Diestel, S., Schaefer, D., Cremer, H. & Schmitz, B. NCAM is ubiquitylated, endocytosed and recycled in neurons. J. Cell Sci. 120, 4035–4049 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Mathew, D., Popescu, A. & Budnik, V. Drosophila amphiphysin functions during synaptic Fasciclin II membrane cycling. J. Neurosci. 23, 10710–10716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Juo, P. & Kaplan, J.M. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr. Biol. 14, 2057–2062 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. van Roessel, P., Elliott, D.A., Robinson, I.M., Prokop, A. & Brand, A.H. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Stegmüller, J. et al. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron 50, 389–400 (2006).

    Article  PubMed  Google Scholar 

  37. Yang, Y. et al. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science 326, 575–578 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dodd, J., Morton, S.B., Karagogeos, D., Yamamoto, M. & Jessell, T.M. Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1, 105–116 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Bastiani, M.J., Harrelson, A.L., Snow, P.M. & Goodman, C.S. Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48, 745–755 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Ango, F. et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 119, 257–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Katsuki, T., Ailani, D., Hiramoto, M. & Hiromi, Y. Intra-axonal patterning: intrinsic compartmentalization of the axonal membrane in Drosophila neurons. Neuron 64, 188–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Rutishauser, U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat. Rev. Neurosci. 9, 26–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Weinhold, B. et al. Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J. Biol. Chem. 280, 42971–42977 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Kirby, B.B. et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat. Neurosci. 9, 1506–1511 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Wright, J.W. & Copenhaver, P.F. Different isoforms of fasciclin II play distinct roles in the guidance of neuronal migration during insect embryogenesis. Dev. Biol. 225, 59–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Mao, Y. & Freeman, M. Fasciclin 2, the Drosophila orthologue of neural cell-adhesion molecule, inhibits EGF receptor signalling. Development 136, 473–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lehembre, F. et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J. 27, 2603–2615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Franzdóttir, S.R. et al. Switch in FGF signalling initiates glial differentiation in the Drosophila eye. Nature 460, 758–761 (2009).

    PubMed  Google Scholar 

  50. Kohsaka, H., Takasu, E. & Nose, A. In vivo induction of postsynaptic molecular assembly by the cell adhesion molecule Fasciclin2. J. Cell Biol. 179, 1289–1300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Lehner, J. Raff, B. Altenhein, T. Orr-Weaver, G. Tear, K. Basler, M. Landgraf and A. Nose for flies and antibodies; T. Hummel, E. Raz, A. Püschel and T.R. Clandinin for comments on the manuscript; G. Edenfeld, K. Krukkert, N. Otto, A. Weinbrecht and H. Neuert for help with initial experiments; J. Lipp for help with statistical analysis; and members of the Klämbt lab for support and discussions. This work was supported by a PhD fellowship of the Boehringer Ingelheim Fonds to M.S. and grants of the Deutsche Forschungsgemeinschaft to C.K.

Author information

Authors and Affiliations

Authors

Contributions

M.S. conducted the experiments and analysed the data. C.K. contributed ideas. M.S. and C.K. wrote the manuscript.

Corresponding author

Correspondence to Christian Klämbt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 6519 kb)

Supplementary Movie 1

Wild type embryo carrying two repoGal4 and two UAS-GFPstinger transgenes. (MOV 1353 kb)

Supplementary Movie 2

fzr/cdh1ie28 mutant type embryo carrying two repoGal4 and two UAS-GFPstinger transgenes. (MOV 3612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silies, M., Klämbt, C. APC/CFzr/Cdh1-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS. Nat Neurosci 13, 1357–1364 (2010). https://doi.org/10.1038/nn.2656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2656

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing