Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy

Abstract

Fluorescence nanoscopy has revolutionized our ability to visualize biological structures not resolvable by conventional microscopy. However, photodamage induced by intense light exposure has limited its use in live specimens. Here we describe Kohinoor, a fast-switching, positively photoswitchable fluorescent protein, and show that it has high photostability over many switching repeats. With Kohinoor, we achieved super-resolution imaging of live HeLa cells using biocompatible, ultralow laser intensity (0.004 J/cm2) in reversible saturable optical fluorescence transition (RESOLFT) nanoscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photophysical characteristics of Kohinoor.
Figure 2: Kohinoor localization and photoswitching.
Figure 3: RESOLFT imaging of a live HeLa cell expressing vimentin-Kohinoor.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Hell, S.W. & Wichmann, J. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  2. Tiwari, D.K. & Nagai, T. Dev. Growth Differ. 55, 491–507 (2013).

    Article  CAS  Google Scholar 

  3. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  Google Scholar 

  4. Gustafsson, M.G. J. Microsc. 198, 82–87 (2000).

    Article  CAS  Google Scholar 

  5. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  6. Chen, B.C. et al. Science 346, 1257998 (2014).

    Article  Google Scholar 

  7. Wu, Y. et al. Nat. Biotechnol. 31, 1032–1038 (2013).

    Article  CAS  Google Scholar 

  8. Hell, S.W. Phys. Lett. A 326, 140–145 (2004).

    Article  CAS  Google Scholar 

  9. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S.W. Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).

    Article  CAS  Google Scholar 

  10. Grotjohann, T. et al. eLife 1, e00248 (2012).

    Article  Google Scholar 

  11. Grotjohann, T. et al. Nature 478, 204–208 (2011).

    Article  CAS  Google Scholar 

  12. Chmyrov, A. et al. Nat. Methods 10, 737–740 (2013).

    Article  CAS  Google Scholar 

  13. Brakemann, T. et al. Nat. Biotechnol. 29, 942–947 (2011).

    Article  CAS  Google Scholar 

  14. Andresen, M. et al. Nat. Biotechnol. 26, 1035–1040 (2008).

    Article  CAS  Google Scholar 

  15. Andresen, M. et al. Proc. Natl. Acad. Sci. USA 102, 13070–13074 (2005).

    Article  CAS  Google Scholar 

  16. Schwentker, M.A. et al. Microsc. Res. Tech. 70, 269–280 (2007).

    Article  CAS  Google Scholar 

  17. Ando, R., Mizuno, H. & Miyawaki, A. Science 306, 1370–1373 (2004).

    Article  CAS  Google Scholar 

  18. Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Nat. Biotechnol. 16, 258–261 (1998).

    Article  CAS  Google Scholar 

  19. Brakemann, T. et al. J. Biol. Chem. 285, 14603–14609 (2010).

    Article  CAS  Google Scholar 

  20. Kao, Y.-T., Zhu, X., Xu, F. & Min, W. Biomed. Opt. Express 3, 1955–1963 (2012).

    Article  CAS  Google Scholar 

  21. Hafi, N. et al. Nat. Methods 11, 579–584 (2014).

    Article  CAS  Google Scholar 

  22. Stiel, A.C. et al. Biochem. J. 402, 35–42 (2007).

    Article  CAS  Google Scholar 

  23. Matsuda, T., Miyawaki, A. & Nagai, T. Nat. Methods 5, 339–345 (2008).

    Article  CAS  Google Scholar 

  24. Tomosugi, W. et al. Nat. Methods 6, 351–353 (2009).

    Article  CAS  Google Scholar 

  25. Shaner, N.C. et al. Nat. Methods 10, 407–409 (2013).

    Article  CAS  Google Scholar 

  26. Gayda, S., Nienhaus, K. & Nienhaus, G.U. Biophys. J. 103, 2521–2531 (2012).

    Article  CAS  Google Scholar 

  27. Pfennig, N. & Wagener, S. J. Microbiol. Methods 4, 303–306 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant-in-aid for Scientific Research on Innovative Areas, 'Spying minority in biological phenomena (no. 3306)', from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no. 23115003) (to T.N.), Cooperative Research Program of 'Network Joint Research Center for Materials and Devices' (to K.F.) and a postdoctoral fellowship from the Japan Society for the Promotion of Science (to D.K.T.).

Author information

Authors and Affiliations

Authors

Contributions

T.N. conceived the project. D.K.T. constructed Kohinoor and characterized it with contributions from T.M. and M.N. M.Y. and K.F. set up the RESOLFT microscopy. D.K.T., M.Y. and Y.A. performed RESOLFT imaging. M.A. and Y.A. performed two-photon imaging. All authors discussed and commented on the results and wrote the manuscript.

Corresponding author

Correspondence to Takeharu Nagai.

Ethics declarations

Competing interests

The authors have filed an international patent application for Kohinoor (no. PCT-JP2014-074121).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Tables 1–4 (PDF 12752 kb)

Repeated photoswitching of Kohinoor-β-actin in a live HeLa cell

Photoswitching was repeated 500 times by the alternative excitation of 405-nm and 488-nm lasers in a confocal laserscanning microscope. The cell did not show any morphological changes during photoswitching, indicating the lack of phototoxicity of the 405-nm light. (MP4 15346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, D., Arai, Y., Yamanaka, M. et al. A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy. Nat Methods 12, 515–518 (2015). https://doi.org/10.1038/nmeth.3362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing