Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic identification of gene annotation errors in the widely used yeast mutation collections

Abstract

The baker's yeast mutation collections are extensively used genetic resources that are the basis for many genome-wide screens and new technologies. Anecdotal evidence has previously pointed to the putative existence of a neighboring gene effect (NGE) in these collections. NGE occurs when the phenotype of a strain carrying a particular perturbed gene is due to the lack of proper function of its adjacent gene. Here we performed a large-scale study of NGEs, presenting a network-based algorithm for detecting NGEs and validating software predictions using complementation experiments. We applied our approach to four datasets uncovering a similar magnitude of NGE in each (7–15%). These results have important consequences for systems biology, as the mutation collections are extensively used in almost every aspect of the field, from genetic network analysis to functional gene annotation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of the NIRVANA method.
Figure 2: Examples of NGEs predicted by NIRVANA, which we confirmed by complementation tests.
Figure 3: Examples of predicted non-NGE confirmed by complementation tests.
Figure 4: Validation of predicted NGE cases in the altered response to rapamycin network.

Similar content being viewed by others

References

  1. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  Google Scholar 

  2. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  3. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  Google Scholar 

  4. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  5. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  Google Scholar 

  6. Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006).

    Article  CAS  Google Scholar 

  7. Addinall, S.G. et al. A genomewide suppressor and enhancer analysis of cdc13–1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180, 2251–2266 (2008).

    Article  CAS  Google Scholar 

  8. Tian, W. et al. Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biol. 9 (suppl. 1), S7 (2008).

    Article  Google Scholar 

  9. Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561–566 (2005).

    Article  CAS  Google Scholar 

  10. van Wageningen, S. et al. Functional overlap and regulatory links shape genetic interactions between signaling pathways. Cell 143, 991–1004 (2010).

    Article  CAS  Google Scholar 

  11. Breslow, D.K. et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods 5, 711–718 (2008).

    Article  CAS  Google Scholar 

  12. Ben-Aroya, S. et al. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol. Cell 30, 248–258 (2008).

    Article  CAS  Google Scholar 

  13. Li, Z. et al. Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat. Biotechnol. 29, 361–367 (2011).

    Article  CAS  Google Scholar 

  14. Shachar, R., Ungar, L., Kupiec, M., Ruppin, E. & Sharan, R. A systems-level approach to mapping the telomere length maintenance gene circuitry. Mol. Syst. Biol. 4, 172 (2008).

    Article  Google Scholar 

  15. Ungar, L. et al. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res. 37, 3840–3849 (2009).

    Article  CAS  Google Scholar 

  16. Yosef, N. et al. Toward accurate reconstruction of functional protein networks. Mol. Syst. Biol. 5, 248 (2009).

    Article  Google Scholar 

  17. Dittrich, M., Klau, G., Rosenwald, A., Dandekar, T. & Müller, T. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, i223–i231 (2008).

    Article  CAS  Google Scholar 

  18. Huang, S.S. & Fraenkel, E. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci. Signal. 2, ra40 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Yosef, N. et al. ANAT–a software tool for reconstructing and analyzing functional networks of proteins. Sci. Signal. 4, l1 (2011).

    Article  Google Scholar 

  20. Askree, S.H. et al. A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc. Natl. Acad. Sci. USA 101, 8658–8663 (2004).

    Article  CAS  Google Scholar 

  21. Gatbonton, T. et al. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet. 2, e35 (2006).

    Article  Google Scholar 

  22. Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62–69 (2004).

    Article  CAS  Google Scholar 

  23. Chan, T.F., Carvalho, J., Riles, L. & Zheng, X.F. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl. Acad. Sci. USA 97, 13227–13232 (2000).

    Article  CAS  Google Scholar 

  24. Crespo, J.L. & Hall, M.N. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 66, 579–591 (2002).

    Article  CAS  Google Scholar 

  25. Reid, R.J. et al. Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I-induced DNA damage. Genome Res. 21, 477–486 (2011).

    Article  CAS  Google Scholar 

  26. Gustavsson, M. & Ronne, H. Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast. RNA 14, 666–674 (2008).

    Article  CAS  Google Scholar 

  27. Tuller, T. et al. Higher-order genomic organization of cellular functions in yeast. J. Comput. Biol. 16, 303–316 (2009).

    Article  CAS  Google Scholar 

  28. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Article  CAS  Google Scholar 

  29. Snyder, M. & Gallagher, J.E. Systems biology from a yeast omics perspective. FEBS Lett. 583, 3895–3899 (2009).

    Article  CAS  Google Scholar 

  30. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102, 1974–1979 (2005).

    Article  CAS  Google Scholar 

  31. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  32. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  Google Scholar 

  33. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  Google Scholar 

  34. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  35. Reguly, T. et al. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5, 11 (2006).

    Article  Google Scholar 

  36. Breitkreutz, B.J. et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res. 36 Database issue, D637–D640 (2008).

    Article  CAS  Google Scholar 

  37. Yosef, N. et al. ANAT: a tool for constructing and analyzing functional protein networks. Sci. Signal. 4, pl1 (2011).

    Article  Google Scholar 

  38. Charikar, M. et al. Approximation algorithms for directed Steiner problems. J. Algorithms 33, 73–91 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank current and past members of the Sharan, Ruppin and Kupiec laboratories for helpful discussions, and D. Shore, R. Rolfes, B. Cairns, A. Johnson, S. Harashima, A.S. Bystrom, S. Moye-Rowley, M. Johnston, M.A. Clayton, G.H. Braus, B. Polevoda, R. Movva, E. Alani, J.P. Gélugne, V. Measday, D. Ramotar, A. Munn, E. Miller, B.C. Laurent, C. Brenner, M. Polymenis, J. Gerst, L. Aragon, D. Spatt, J. Boeke, G. Brown, C. Burd, M. Tamas, D.H. Wolf, Y. Hannun, Y. Ohsumi, Z. Ciesla, M. Choder, E. Bi, M. Bard, R. Schaffrath, H.U. Mosch, A. Amon, R. Parker, Y. Saeki, J. Kim, H.O. Park, E. Etsuchi, H. Nakatogana, B. Daignan-Fornier for providing plasmids. This work was supported by grants from the Israeli Ministry of Science and Technology and the Israel Cancer Foundation to M.K., and by a grant from the James McDonnel Fund to M.K., R.S. and E.R.; E.R. and R.S. were also supported by a Bikura grant from the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.B.-S., N.Y., R.S., E.R. and M.K. conceived and designed the experiments and wrote the paper. T.B.-S. and K.S. carried out the wet laboratory experiments. N.Y. analyzed the data obtained. R.S. and E.R. contributed equally to this project.

Corresponding author

Correspondence to Martin Kupiec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 2, 5 and 7–9 (PDF 874 kb)

Supplementary Table 1

NGE analysis of the TLM set. (XLS 107 kb)

Supplementary Table 3

Complexes that participate in the TLM and RR sets. (XLS 44 kb)

Supplementary Table 4

NGE analysis of the RR set. (XLS 102 kb)

Supplementary Table 6

Predicted and verified NGE in the TLM set. (XLS 37 kb)

Supplementary Software

NIRVANA software. (ZIP 2239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Shitrit, T., Yosef, N., Shemesh, K. et al. Systematic identification of gene annotation errors in the widely used yeast mutation collections. Nat Methods 9, 373–378 (2012). https://doi.org/10.1038/nmeth.1890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1890

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research