Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects

Abstract

Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this scenario has not been directly confirmed, leaving a gap in the understanding of the intriguing electrical properties of domain walls. Here, we provide atomic-scale chemical and structural analyses showing the accumulation of charged defects at domain walls in BiFeO3. The defects were identified as Fe4+ cations and bismuth vacancies, revealing p-type hopping conduction at domain walls caused by the presence of electron holes associated with Fe4+. In agreement with the p-type behaviour, we further show that the local domain-wall conductivity can be tailored by controlling the atmosphere during high-temperature annealing. This work has possible implications for engineering local conductivity in ferroelectrics and for devices based on domain walls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Off-centre Fe displacements and lattice strain across a 109° DW in polycrystalline BiFeO3.
Figure 2: Accumulation of charged defects (Fe4+ and bismuth vacancies) at a 109° DW in polycrystalline BiFeO3.
Figure 3: Control of local conductivity at DWs in polycrystalline BiFeO3 by post-annealing in nitrogen and oxygen atmosphere.

Similar content being viewed by others

References

  1. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010).

    CAS  Google Scholar 

  2. Kim, Y.-M. et al. Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1−xMnO3 interface. Nat. Mater. 13, 1019–1025 (2014).

    CAS  Google Scholar 

  3. Spurgeon, S. R. et al. Polarization screening-induced magnetic phase gradients at complex oxide interfaces. Nat. Commun. 6, 6735 (2015).

    CAS  Google Scholar 

  4. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    CAS  Google Scholar 

  5. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    CAS  Google Scholar 

  6. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    CAS  Google Scholar 

  7. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).

    Google Scholar 

  8. Du, Y. et al. Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Appl. Phys. Lett. 99, 252107 (2011).

    Google Scholar 

  9. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    CAS  Google Scholar 

  10. Lubk, A., Gemming, S. & Spaldin, N. A. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009).

    Google Scholar 

  11. Morozovska, A. N., Vasudevan, R. K., Maksymovych, P., Kalinin, S. V. & Eliseev, E. A. Anisotropic conductivity of uncharged domain walls in BiFeO3 . Phys. Rev. B 86, 085315 (2012).

    Google Scholar 

  12. Morozovska, A. N. Domain wall conduction in ferroelectrics. Ferroelectrics 438, 3–19 (2012).

    CAS  Google Scholar 

  13. Xiao, Y., Shenoy, V. B. & Bhattacharya, K. Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys. Rev. Lett. 95, 247603 (2005).

    Google Scholar 

  14. Hong, L. & Soh, A. K. Interaction of O vacancies and domain structures in single crystal BaTiO3: two-dimensional ferroelectric model. Phys. Rev. B 77, 094104 (2008).

    Google Scholar 

  15. Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).

    CAS  Google Scholar 

  16. Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3 . Phys. Rev. Lett. 105, 197603 (2010).

    CAS  Google Scholar 

  17. Farokhipoor, S. & Noheda, B. Local conductivity and the role of vacancies around twin walls of (001) − BiFeO3 thin films. J. Appl. Phys. 112, 052003 (2012).

    Google Scholar 

  18. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    CAS  Google Scholar 

  19. Stolichnov, I. et al. Persistent conductive footprints of 109° domain walls in bismuth ferrite films. Appl. Phys. Lett. 104, 132902 (2014).

    Google Scholar 

  20. Stolichnov, I. et al. Bent ferroelectric domain walls as reconfigurable metallic-like channels. Nano Lett. 15, 8049–8055 (2015).

    CAS  Google Scholar 

  21. Shao, Y., Maunders, C., Rossouw, D., Kolodiazhnyi, T. & Botton, G. A. Quantification of the Ti oxidation state in BaTi1−xNbxO3 compounds. Ultramicroscopy 110, 1014–1019 (2010).

    CAS  Google Scholar 

  22. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3 . Nat. Mater. 9, 253–258 (2010).

    CAS  Google Scholar 

  23. Chiu, Y.-P. et al. Atomic-scale evolution of local electronic structure across multiferroic domain walls. Adv. Mater. 23, 1530–1534 (2011).

    CAS  Google Scholar 

  24. Seidel, J. et al. Electronic properties of isosymmetric phase boundaries in highly strained Ca-doped BiFeO3 . Adv. Mater. 26, 4376–4380 (2014).

    CAS  Google Scholar 

  25. Crassous, A., Sluka, T., Taganstev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotech. 10, 614–648 (2015).

    CAS  Google Scholar 

  26. Whyte, J. R. & Gregg, J. M. A diode for ferroelectric domain-wall motion. Nat. Commun. 6, 7361 (2015).

    CAS  Google Scholar 

  27. Rojac, T., Ursic, H., Bencan, A., Malic, B. & Damjanovic, D. Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response. Adv. Funct. Mater. 25, 2099–2108 (2015).

    CAS  Google Scholar 

  28. Bednyakov, P. S., Sluka, T., Tagantsev, A. K., Damjanovic, D. & Setter, N. Formation of charged ferroelectric domain walls with controlled periodicity. Sci. Rep. 5, 15819 (2015).

    CAS  Google Scholar 

  29. He, L. & Vanderbilt, D. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3 . Phys. Rev. B 68, 134103 (2003).

    Google Scholar 

  30. Streiffer, S. K. et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742–2753 (1998).

    CAS  Google Scholar 

  31. Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    CAS  Google Scholar 

  32. Phillips, P. J. et al. Atomic-resolution defect contrast in low angle annular dark-field STEM. Ultramicroscopy 116, 47–55 (2012).

    CAS  Google Scholar 

  33. Wang, Y. et al. Domain wall energies and structures: a combined experimental and density functional theory + U study. Phys. Rev. Lett. 110, 267601 (2013).

    Google Scholar 

  34. Aschauer, U., Pfenninger, R., Selbach, S. M., Grande, T. & Spaldin, A. Strain-controlled oxygen vacancy formation and ordering in CaMnO3 . Phys. Rev. B 88, 054111 (2013).

    Google Scholar 

  35. Makhdoom, A. R. et al. Association of microstructure and electric heterogeneity in BiFeO3 . Mater. Chem. Phys. 143, 256–262 (2013).

    CAS  Google Scholar 

  36. Morozov, M., Einarsrud, M.-A. & Grande, T. Atmosphere controlled conductivity and Maxwell-Wagner relaxation in Bi0.5K0.5TiO3–BiFeO3 ceramics. J. Appl. Phys. 115, 044104 (2014).

    Google Scholar 

  37. Wefring, E. T., Einarsrurd, M.-A. & Grande, T. Electrical conductivity and thermopower of (1 − x)BiFeO3–xBi0.5K0.5TiO3(x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. Phys. Chem. Chem. Phys. 17, 9420–9428 (2015).

    CAS  Google Scholar 

  38. Mizusaki, J., Sasamoto, T., Cannon, W. R. & Bowen, H. K. Electronic conductivity, Seebeck coefficient, and defect structure of LaFeO3 . J. Am. Ceram. Soc. 65, 363–368 (1982).

    CAS  Google Scholar 

  39. Hodges, J. P., Short, S. & Jorgesen, J. D. Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n−1 (n = 2, 4, 8, and ), and the relationship to electronic and magnetic properties. J. Solid State Chem. 151, 190–209 (2000).

    CAS  Google Scholar 

  40. Tan, H., Verbeeck, J., Abakumov, A. & Van Tendeloo, G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012).

    CAS  Google Scholar 

  41. LeBeau, J. M. & Stemmer, S. Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 1653–1658 (2008).

    CAS  Google Scholar 

  42. Zhang, Z., Wu, P., Chen, L. & Wang, J. Density functional theory plus U study of vacancy formations in bismuth ferrite. Appl. Phys. Lett. 96, 232906 (2010).

    Google Scholar 

  43. Paudel, T. R., Jaswal, S. S. & Tsymbal, E. Y. Intrinsic defects in multiferroic BiFeO3 and their effect on magnetism. Phys. Rev. B 85, 104409 (2012).

    Google Scholar 

  44. Matsuo, H., Kitanaka, Y., Inoue, R., Noguchi, Y. & Miyayama, M. Switchable diode-effect mechanism in ferroelectric BiFeO3 thin film capacitors. J. Appl. Phys. 118, 114101 (2015).

    Google Scholar 

  45. Maso, N. & West, A. R. Electrical properties of Ca-doped BiFeO3 ceramics: from p-type semiconduction to oxide-ion conduction. Chem. Mater. 24, 2127–2132 (2012).

    CAS  Google Scholar 

  46. Tsurumaki, A., Yamada, H. & Sawa, A. Impact of Bi deficiencies on ferroelectric resistive switching characteristics observed at p-type Schottky-like Pt/Bi1−δFeO3 interfaces. Adv. Funct. Mater. 22, 1040–1047 (2012).

    CAS  Google Scholar 

  47. Dyre, J. C. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 64, 2456–2468 (1988).

    Google Scholar 

  48. Douglas, A. M., Kumar, A., Whatmore, R. W. & Gregg, J. M. Local conductance: a means to extract polarization and depolarizing fields near domain walls in ferroelectrics. Appl. Phys. Lett. 107, 172905 (2015).

    Google Scholar 

  49. Lee, P. W. et al. Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3 . Nat. Commun. 7, 12773 (2016).

    CAS  Google Scholar 

  50. Khansur, N. H. et al. Electric-field-induced domain switching and domain texture relaxations in bulk bismuth ferrite. J. Am. Ceram. Soc. 98, 3884–3890 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Slovenian Research Agency (programmes P2-0105 and P2-0393; projects J2-5483 and J2-6754). Centres of Excellence NAMASTE and CONOT are acknowledged for access to the AFM/PFM and STEM equipment. B. Kmet is acknowledged for TEM sample preparation. T.R. thanks T. Grande for fruitful discussions on the defect chemistry of BiFeO3.

Author information

Authors and Affiliations

Authors

Contributions

T.R. directed the project. A.B., G.D. and N.S. performed STEM and EELS measurements and analyses, and G.D. performed HAADF simulations. H.U. performed AFM/PFM analyses. B.J. and G.T. designed standard materials for EELS analysis. M.M. synthesized the BiFeO3 samples. B.M. supervised the project and D.D. contributed to the interpretation of the results. T.R., A.B., G.D., H.U., B.J., J.W. and D.D. wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Tadej Rojac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojac, T., Bencan, A., Drazic, G. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nature Mater 16, 322–327 (2017). https://doi.org/10.1038/nmat4799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing