Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elastic and thermal expansion asymmetry in dense molecular materials

Abstract

The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elastic asymmetry is fundamentally related to network connectivity.
Figure 2: Terminal O atoms control the free volume change asymmetry in the molecular matrix.
Figure 3: The asymmetric coefficient of thermal expansion is related to a resistive entropic force.
Figure 4: Nanoscale porosity decreases the degree of elastic asymmetry.
Figure 5: The design space for the degree of elastic asymmetry is controlled by network connectivity and density.

Similar content being viewed by others

References

  1. de Lima, J. J., Lacerda, R. G., Vilcarromero, J. & Marques, F. C. Coefficient of thermal expansion and elastic modulus of thin films. J. Appl. Phys. 86, 4936–4942 (1999).

    Article  CAS  Google Scholar 

  2. Rosenfield, A. R. & Averbach, B. L. Effect of stress on the expansion coefficient. J. Appl. Phys. 27, 154–156 (1956).

    Article  Google Scholar 

  3. Preston, S. D. & Marsden, B. J. Changes in the coefficient of thermal expansion in stressed Gilsocarbon graphite. Carbon NY 44, 1250–1257 (2006).

    Article  CAS  Google Scholar 

  4. Jones, R. M. Stress-strain relations for materials with different moduli in tension and compression. AIAA J. 15, 16–23 (1977).

    Article  Google Scholar 

  5. Cai, K. Effects of the properties of bi-modulus material on stiffness design. 2010 Int. Conf. Intell. Comput. Technol. Autom. (ICICTA), 11 May 2010, Vol. 2, 192–195 (IEEE, 2010).

  6. Medri, G. A nonlinear elastic model for isotropic materials with different behavior in tension and compression. J. Eng. Mater. Technol. 104, 26–28 (1982).

    Article  Google Scholar 

  7. Destrade, M., Murphy, J. G. & Rashid, B. Differences in tension and compression in the nonlinearly elastic bending of beams. Preprint at http://arxiv.org/abs/1303.1901 (2013).

  8. Volksen, W., Miller, R. D. & Dubois, G. Low dielectric constant materials. Chem. Rev. 110, 56–110 (2009).

    Article  Google Scholar 

  9. Yoldas, B. E. Investigations of porous oxides as an antireflective coating for glass surfaces. Appl. Opt. 19, 1425–1429 (1980).

    Article  CAS  Google Scholar 

  10. Chen, X., Xiang, Y. & Vlassak, J. J. Novel technique for measuring the mechanical properties of porous materials by nanoindentation. J. Mater. Res. 21, 715–724 (2006).

    Article  CAS  Google Scholar 

  11. Fischer-Cripps, A. C. Nanoindentation (Springer, 2004).

    Book  Google Scholar 

  12. Volinsky, A. A., Vella, J. B. & Gerberich, W. W. Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films 429, 201–210 (2003).

    Article  CAS  Google Scholar 

  13. Takimura, T., Hata, N., Takada, S. & Yoshino, T. Determination of mechanical properties of porous silica low-k films on Si substrates using orientation dependence of surface acoustic wave. Jpn. J. Appl. Phys. 47, 5400–5403 (2008).

    Article  CAS  Google Scholar 

  14. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article  CAS  Google Scholar 

  15. Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  16. Dubois, G. et al. Molecular network reinforcement of sol–gel glasses. Adv. Mater. 19, 3989–3994 (2007).

    Article  CAS  Google Scholar 

  17. Tajima, N. et al. Molecular modeling of low-k films of carbon-doped silicon oxides for theoretical investigations of the mechanical and dielectric properties. Appl. Phys. Lett. 89, 061907 (2006).

    Article  Google Scholar 

  18. Tajima, N. et al. Carbon-doped silicon oxide films with hydrocarbon network bonds for low-k dielectrics: theoretical investigations. Jpn. J. Appl. Phys. 46, 5970–5974 (2007).

    Article  CAS  Google Scholar 

  19. Oliver, M. S., Dubois, G., Sherwood, M., Gage, D. M. & Dauskardt, R. H. Molecular origins of the mechanical behavior of hybrid glasses. Adv. Funct. Mater. 20, 2884–2892 (2010).

    Article  CAS  Google Scholar 

  20. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  21. Liu, B. & Qiu, X. M. How to compute the atomic stress objectively? J. Comput. Theor. Nanosci. 6, 1081–1089 (2009).

    Article  CAS  Google Scholar 

  22. Subramaniyan, A. K. & Sun, C. T. Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45, 4340–4346 (2008).

    Article  Google Scholar 

  23. Finney, J. L. A procedure for the construction of Voronoi polyhedra. J. Comput. Phys. 32, 137–143 (1979).

    Article  Google Scholar 

  24. Tanemura, M., Ogawa, T. & Ogita, N. A new algorithm for three-dimensional Voronoi tessellation. J. Comput. Phys. 51, 191–207 (1983).

    Article  Google Scholar 

  25. Gellatly, B. J. & Finney, J. L. Characterisation of models of multicomponent amorphous metals: the radical alternative to the Voronoi polyhedron. J. Non-Cryst. Solids 50, 313–329 (1982).

    Article  CAS  Google Scholar 

  26. Sietsma, J. & Thijsse, B. J. Characterization of free volume in atomic models of metallic glasses. Phys. Rev. B 52, 3248–3255 (1995).

    Article  CAS  Google Scholar 

  27. Arizzi, S., Mott, P. H. & Suter, U. W. Space available to small diffusants in polymeric glasses: analysis of unoccupied space and its connectivity. J. Polym. Sci. B 30, 415–426 (1992).

    Article  CAS  Google Scholar 

  28. Voloshin, V. P., Medvedev, N. N. & Geiger, A. Fast Calculation of the Empty Volume in Molecular Systems by the Use of Voronoi-Delaunay Subsimplexes 156–172 (Trans. Comput. Sci. XXII, Springer, 2014).

    Google Scholar 

  29. Voloshin, V. P. & Naberukhin, Y. I. Empty interatomic space in computer models of simple liquids and amorphous solids. J. Phys. Condens. Matter 5, 5685–5700 (1993).

    Article  CAS  Google Scholar 

  30. Cameron, K. K. & Dauskardt, R. H. Fatigue damage in bulk metallic glass I: simulation. Scr. Mater. 54, 349–353 (2006).

    Article  CAS  Google Scholar 

  31. Rycroft, C. Voro++: A Three-Dimensional Voronoi Cell Library in C++ (Lawrence Berkeley National Laboratory, 2009).

    Book  Google Scholar 

  32. Chu, J. J. & Steeves, C. A. Thermal expansion and recrystallization of amorphous Al and Ti: a molecular dynamics study. J. Non-Cryst. Solids 357, 3765–3773 (2011).

    Article  CAS  Google Scholar 

  33. Liu, Z. K., Wang, Y. & Shang, S. L. Thermal expansion anomaly regulated by entropy. Sci. Rep. 4, 7043 (2014).

    Article  CAS  Google Scholar 

  34. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  CAS  Google Scholar 

  35. Bhattacharya, S. & Kieffer, J. Fractal dimensions of silica gels generated using reactive molecular dynamics simulations. J. Chem. Phys. 122, 094715 (2005).

    Article  Google Scholar 

  36. Rao, N. Z. & Gelb, L. D. Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J. Phys. Chem. B 108, 12418–12428 (2004).

    Article  CAS  Google Scholar 

  37. Sefcik, J. & Rankin, S. E. Monte Carlo simulations of size and structure of gel precursors in silica polycondensation. J. Phys. Chem. B 107, 52–60 (2003).

    Article  CAS  Google Scholar 

  38. Striolo, A., McCabe, C. & Cummings, P. T. Thermodynamic and transport properties of polyhedral oligomeric sislesquioxanes in poly(dimethylsiloxane). J. Phys. Chem. B 109, 14300–14307 (2005).

    Article  CAS  Google Scholar 

  39. Striolo, A., McCabe, C. & Cummings, P. T. Organic–inorganic telechelic molecules: solution properties from simulations. J. Chem. Phys. 125, 104904 (2006).

    Article  Google Scholar 

  40. Feuston, B. P. & Garofalini, S. H. Empirical three-body potential for vitreous silica. J. Chem. Phys. 89, 5818–5824 (1988).

    Article  CAS  Google Scholar 

  41. Jorgensen, W. L., Maxwell, D. S. & Rives, J. T. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  42. Stillinger, F. H. & Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

    Article  CAS  Google Scholar 

  43. Oliver, M., Dubois, G. & Dauskardt, R. H. Molecular design of ultra-low-k hybrid glasses. 2010 IEEE Int. Interconnect Technol. Conf. (IITC), 6 June 2010, 1–3 (IEEE, 2010).

  44. Oliver, M., Dubois, G., Sherwood, M., Gage, D. M. & Dauskardt, R. H. Mechanical fatigue of hybrid glasses. Small 6, 1892–1896 (2010).

    Article  CAS  Google Scholar 

  45. Rimsza, J. M., Deng, L. & Du, J. Molecular dynamics simulations of nanoporous organosilicate glasses using Reactive Force Field (ReaxFF). J. Non-Cryst. Solids 431, 103–111 (2015).

    Article  Google Scholar 

  46. Barber, C. B., Dobkin, D. P. & Huhdanpaa, H. The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996).

    Article  Google Scholar 

  47. Graham, R. L. An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972).

    Article  Google Scholar 

  48. Lee, D.-T. & Schachter, B. J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9, 219–242 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the US Department of Energy, Office of Basic Energy Sciences, for their financial support under Contract No. DE-FG02-07ER46391.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B. designed and performed simulations, analysed data, and wrote the manuscript. R.H.D. wrote the manuscript and supervised the research.

Corresponding author

Correspondence to Reinhold H. Dauskardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burg, J., Dauskardt, R. Elastic and thermal expansion asymmetry in dense molecular materials. Nature Mater 15, 974–980 (2016). https://doi.org/10.1038/nmat4674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing