Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials

Abstract

Controlling the alignment of the emitting molecules used as dopants in organic light-emitting diodes is an effective strategy to improve the outcoupling efficiency of these devices. To explore the mechanism behind the orientation of dopants in films of organic host materials, we synthesized a coumarin-based ligand that was cyclometalated onto an iridium core to form three phosphorescent heteroleptic molecules, (bppo)2Ir(acac), (bppo)2Ir(ppy) and (ppy)2Ir(bppo) (bppo represents benzopyranopyridinone, ppy represents 2-phenylpyridinate, and acac represents acetylacetonate). Each emitter was doped into a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl host layer, and the resultant orientation of their transition dipole moment vectors was measured by angle-dependent p-polarized photoluminescent emission spectroscopy. In solid films, (bppo)2Ir(acac) is found to have a largely horizontal transition dipole vector orientation relative to the substrate, whereas (ppy)2Ir(bppo) and (bppo)2Ir(ppy) are isotropic. We propose that the inherent asymmetry at the surface of the growing film promotes dopant alignment in these otherwise amorphous films. Modelling the net orientation of the transition dipole moments of these materials yields general design rules for further improving horizontal orientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Material structure and properties.
Figure 2: Polarized emission spectra.
Figure 3: Electrostatic surfaces.
Figure 4: Molecular orientation.
Figure 5: Oriented homoleptic phosphors.
Figure 6: Ideal molecular orientation.

Similar content being viewed by others

References

  1. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  2. Jurow, M. J. et al. Controlling morphology and molecular packing of alkane substituted phthalocyanine blend bulk heterojunction solar cells. J. Mater. Chem. A 1, 1557–1565 (2013).

    Article  CAS  Google Scholar 

  3. Tsao, H. N. et al. The influence of morphology on high-performance polymer field-effect transistors. Adv. Mater. 21, 209–212 (2009).

    Article  CAS  Google Scholar 

  4. Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 21, 19187–19202 (2011).

    Article  CAS  Google Scholar 

  5. Namdas, E. B., Ruseckas, A., Samuel, I. D. W., Lo, S.-C. & Burn, P. L. Photophysics of fac-tris(2-phenylpyridine) iridium(III) cored electroluminescent dendrimers in solution and films. J. Phys. Chem. B 108, 1570–1577 (2004).

    Article  CAS  Google Scholar 

  6. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  7. Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999).

    Article  CAS  Google Scholar 

  8. Mladenovski, S., Neyts, K., Pavicic, D., Werner, A. & Rothe, C. Exceptionally efficient organic light emitting devices using high refractive index substrates. Opt. Express 17, 7562–7570 (2009).

    Article  CAS  Google Scholar 

  9. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    Article  CAS  Google Scholar 

  10. Brütting, W., Frischeisen, J., Schmidt, T. D., Scholz, B. J. & Mayr, C. Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling. Phys. Status Solidi A 210, 44–65 (2013).

    Article  CAS  Google Scholar 

  11. Schmidt, T. D. et al. Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency. Appl. Phys. Lett. 99, 163302 (2011).

    Article  CAS  Google Scholar 

  12. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  13. Sasabe, H. & Kido, J. Development of high performance OLEDs for general lighting. J. Mater. Chem. C 1, 1699–1707 (2013).

    Article  CAS  Google Scholar 

  14. Sasabe, H. & Kido, J. Recent progress in phosphorescent organic light-emitting devices. Eur. J. Org. Chem. 2013, 7653–7663 (2013).

    Article  CAS  Google Scholar 

  15. Mayr, C., Schmidt, T. D. & Brütting, W. High-efficiency fluorescent organic light-emitting diodes enabled by triplet–triplet annihilation and horizontal emitter orientation. Appl. Phys. Lett. 105, 183304 (2014).

    Article  CAS  Google Scholar 

  16. Liehm, P. et al. Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes. Appl. Phys. Lett. 101, 253304 (2012).

    Article  CAS  Google Scholar 

  17. Mayr, C. & Brutting, W. Control of molecular dye orientation in organic luminescent films by the glass transition temperature of the host material. Chem. Mater. 27, 2759–2762 (2015).

    Article  CAS  Google Scholar 

  18. Flämmich, M. et al. Oriented phosphorescent emitters boost OLED efficiency. Org. Electron. 12, 1663–1668 (2011).

    Article  CAS  Google Scholar 

  19. Helander, M. G. et al. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332, 944–947 (2011).

    Article  CAS  Google Scholar 

  20. Lamansky, S. et al. Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc. 123, 4304–4312 (2001).

    Article  CAS  Google Scholar 

  21. Lassiter, B. E. et al. Organic photovoltaics incorporating electron conducting exciton blocking layers. Appl. Phys. Lett. 98, 243307 (2011).

    Article  CAS  Google Scholar 

  22. Kim, K.-H. et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nature Commun. 5, 4769 (2014).

    Article  CAS  Google Scholar 

  23. Kim, K.-H., Moon, C.-K., Lee, J.-H., Kim, S.-Y. & Kim, J.-J. Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv. Mater. 26, 3844–3847 (2014).

    Article  CAS  Google Scholar 

  24. Kim, S.-Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).

    Article  CAS  Google Scholar 

  25. Lee, J.-H. et al. Finely tuned blue iridium complexes with varying horizontal emission dipole ratios and quantum yields for phosphorescent organic light-emitting diodes. Adv. Opt. Mater. 3, 211–220 (2014).

    Article  CAS  Google Scholar 

  26. Graf, A. et al. Correlating the transition dipole moment orientation of phosphorescent emitter molecules in OLEDs with basic material properties. J. Mater. Chem. C 2, 10298–10304 (2014).

    Article  CAS  Google Scholar 

  27. Reineke, S., Rosenow, T. C., Lüssem, B. & Leo, K. Improved high-brightness efficiency of phosphorescent organic LEDs comprising emitter molecules with small permanent dipole moments. Adv. Mater. 22, 3189–3193 (2010).

    Article  CAS  Google Scholar 

  28. Reineke, S., Schwartz, G., Walzer, K., Falke, M. & Leo, K. Highly phosphorescent organic mixed films: The effect of aggregation on triplet–triplet annihilation. Appl. Phys. Lett. 94, 163305 (2009).

    Article  CAS  Google Scholar 

  29. Kim, K.-H. et al. Controlling emitting dipole orientation with methyl substituents on main ligand of iridium complexes for highly efficient phosphorescent organic light-emitting diodes. Adv. Opt. Mater. 3, http://dx.doi.org/10.1002/adom.201500141 (2015)

    Article  CAS  Google Scholar 

  30. Moon, C.-K., Kim, K.-H., Lee, J. W. & Kim, J.-J. Influence of host molecules on emitting dipole orientation of phosphorescent iridium complexes. Chem. Mater. 27, 2767–2769 (2015).

    Article  CAS  Google Scholar 

  31. Ren, X. et al. Coumarin-based, electron-trapping iridium complexes as highly efficient and stable phosphorescent emitters for organic light-emitting diodes. Inorg. Chem. 49, 1301–1303 (2010).

    Article  CAS  Google Scholar 

  32. Jaguar v. Version 8.4r17 (Schrödinger LLC, 2014); www.shrodinger.com/Jaguar

  33. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  34. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985).

    Article  CAS  Google Scholar 

  35. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  36. Frischeisen, J., Yokoyama, D., Endo, A., Adachi, C. & Brütting, W. Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters. Org. Electron. 12, 809–817 (2011).

    Article  CAS  Google Scholar 

  37. Frischeisen, J., Yokoyama, D., Adachi, C. & Brütting, W. Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl. Phys. Lett. 96, 073302 (2010).

    Article  CAS  Google Scholar 

  38. Mayr, C. et al. Efficiency enhancement of organic light-emitting diodes incorporating a highly oriented thermally activated delayed fluorescence emitter. Adv. Funct. Mater. 24, 5232–5239 (2014).

    Article  CAS  Google Scholar 

  39. Weber, W. H. & Eagen, C. F. Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. Opt. Lett. 4, 236–238 (1979).

    Article  CAS  Google Scholar 

  40. Kawamura, Y., Brooks, J., Brown, J. J., Sasabe, H. & Adachi, C. Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir(III) complexes in a solid film. Phys. Rev. Lett. 96, 017404 (2006).

    Article  CAS  Google Scholar 

  41. Chi, Y. & Chou, P.-T. Transition-metal phosphors with cyclometalating ligands: Fundamentals and applications. Chem. Soc. Rev. 39, 638–655 (2010).

    Article  CAS  Google Scholar 

  42. Vanhelmont, F. W. M., Strouse, G. F., Güdel, H. U., Stückl, A. C. & Schmalle, H. W. Synthesis, crystal structure, high-resolution optical spectroscopy, and extended Hückel calculations on cyclometalated [Re(CO)4(ppy)] (ppy = 2-phenylpyridine). J. Phys. Chem. A 101, 2946–2952 (1997).

    Article  CAS  Google Scholar 

  43. Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. D. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proc. Natl Acad. Sci. USA 112, 4227–4232 (2015).

    Article  CAS  Google Scholar 

  44. Kearns, K. L. et al. Molecular orientation, thermal behavior and density of electron and hole transport layers and the implication on device performance for OLEDs. Proc. SPIE 9183, 91830F (2014).

    Article  Google Scholar 

  45. Tsai, M. H. et al. 3-(9-carbazolyl)carbazoles and 3,6-di(9-carbazolyl)carbazoles as effective host materials for efficient blue organic electrophosphorescence. Adv. Mater. 19, 862–866 (2007).

    Article  CAS  Google Scholar 

  46. Dalal, S. S., Fakhraai, Z. & Ediger, M. D. High-throughput ellipsometric characterization of vapor-deposited indomethacin glasses. J. Phys. Chem. B 117, 15415–15425 (2013).

    Article  CAS  Google Scholar 

  47. Brian, C. W. & Yu, L. Surface self-diffusion of organic glasses. J. Phys. Chem. A 117, 13303–13309 (2013).

    Article  CAS  Google Scholar 

  48. Zhu, L. et al. Surface self-diffusion of an organic glass. Phys. Rev. Lett. 106, 256103 (2011).

    Article  CAS  Google Scholar 

  49. Xing, X. et al. Essential differences of organic films at the molecular level via vacuum deposition and solution processes for organic light-emitting diodes. J. Phys. Chem. C 117, 25405–25408 (2013).

    Article  CAS  Google Scholar 

  50. Nonoyama, M. Benzo[h]quinolin-10-yl-N iridium(III) complexes. Bull. Chem. Soc. Jpn 47, 767–768 (1974).

    Article  CAS  Google Scholar 

  51. Zhang, W. & Pugh, G. Free radical reactions for heterocycle synthesis. Part 6: 2-bromobenzoic acids as building blocks in the construction of nitrogen heterocycles. Tetrahedron 59, 3009–3018 (2003).

    Article  CAS  Google Scholar 

  52. Navarro, F. F., Djurovich, P. I. & Thompson, M. E. Metal deposition for optoelectronic devices using a low vacuum vapor phase deposition (VPD) system. Org. Electron. 15, 3052–3060 (2014).

    Article  CAS  Google Scholar 

  53. Mayr, C., Taneda, M., Adachi, C. & Brütting, W. Different orientation of the transition dipole moments of two similar Pt(II) complexes and their potential for high efficiency organic light-emitting diodes. Org. Electron. 15, 3031–3037 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described here was carried out with the support of the Universal Display Corporation, The Humboldt Foundation, Bavaria California Technology Center (BaCaTeC) and Deutsche Forschungsgemeinschaft (DFG Br 1728/16-1). C.M. acknowledges financial support by Bayerische Forschungsstiftung.

Author information

Authors and Affiliations

Authors

Contributions

M.J.J. prepared materials and samples, designed experiments and prepared the manuscript; C.M. measured molecular orientation; T.D.S. designed and prepared mathematical models; T.L. designed and prepared mathematical models; P.I.D., W.B. and M.E.T. designed and assisted with experiments and the manuscript.

Corresponding author

Correspondence to Mark E. Thompson.

Ethics declarations

Competing interests

M.E.T. has a competing interest in the Universal Display Corporation.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurow, M., Mayr, C., Schmidt, T. et al. Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials. Nature Mater 15, 85–91 (2016). https://doi.org/10.1038/nmat4428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing