Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy

Abstract

The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy1,2,3,4 and X-ray crystallography5,6, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy7,8 (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody–antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FM-AFM image of a Y-shaped antibody monomer in aqueous solution.
Figure 2: FM-AFM image of flower-like antibody hexamers in aqueous solution.
Figure 3: FM-AFM images of 2D antibody crystals in aqueous solution.
Figure 4: Magnified FM-AFM images of 2D antibody crystals in aqueous solution.
Figure 5: FM-AFM observations of 2D antibody crystals interacting with antigenic or non-antigenic molecules.

Similar content being viewed by others

References

  1. Feinstein, A. & Rowe, A. J. Molecular mechanism of formation of an antigen–antibody complex. Nature 205, 147–149 (1965).

    Article  CAS  Google Scholar 

  2. Valentine, R. C. & Green, N. M. Electron microscopy of an antibody–hapten complex. J. Mol. Biol. 27, 615–617 (1967).

    Article  CAS  Google Scholar 

  3. Lansdorp, P. M., Aalberse, R. C., Bos, R., Schutter, W. G. & Van Bruggen, E. F. J. Cyclic tetramolecular complexes of monoclonal antibodies: A new type of cross-linking reagent. Eur. J. Immunol. 16, 679–683 (1986).

    Article  CAS  Google Scholar 

  4. Roux, K. H. Immunoglobulin structure and function as revealed by electron microscopy. Int. Arch. Allergy Immunol. 120, 85–99 (1999).

    Article  CAS  Google Scholar 

  5. Harris, L. J. et al. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360, 369–372 (1992).

    Article  CAS  Google Scholar 

  6. Harris, L. J., Skaletsky, E. & McPherson, A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275, 861–872 (1998).

    Article  CAS  Google Scholar 

  7. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high- Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  8. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  9. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  10. Müller, D. J. & Engel, A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys. J. 73, 1633–1644 (1997).

    Article  Google Scholar 

  11. Müller, D. J., Fotiadis, D. & Engel, A. Mapping flexible protein domains at subnanometre resolution with the atomic force microscope. FEBS Lett. 430, 105–111 (1998).

    Article  Google Scholar 

  12. Müller, D. J., Fotiadis, D., Scheuring, S., Müller, S. A. & Engel, A. Electrostatically balanced subnanometre imaging of biological specimens by atomic force microscope. Biophys. J. 76, 1101–1111 (1999).

    Article  Google Scholar 

  13. Müller, D. J. & Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nature Nanotech. 3, 261–269 (2008).

    Article  Google Scholar 

  14. Allison, D. P., Mortensen, N. P., Sullivan, C. J. & Doktycz, M. J. Atomic force microscopy of biological samples. WIREs Nanomed. Nanobiotechnol. 2, 618–634 (2010).

    Article  Google Scholar 

  15. Zhang, Y., Sheng, S. & Shao, Z. Imaging biological structures with the cryo atomic force microscope. Biophys. J. 71, 2168–2176 (1996).

    Article  CAS  Google Scholar 

  16. Hansma, H. G. Varieties of imaging with scanning probe microscopes. Proc. Natl Acad. Sci. USA 96, 14678–14680 (1999).

    Article  CAS  Google Scholar 

  17. Cheung, C. L., Hafner, J. H. & Lieber, C. M. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapour deposition and application to high-resolution imaging. Proc. Natl Acad. Sci. USA 97, 3809–3813 (2000).

    Article  CAS  Google Scholar 

  18. Kienberger, F., Mueller, H., Pastushenko, V. & Hinterdorfer, P. Following single antibody binding to purple membranes in real time. EMBO Rep. 5, 579–583 (2004).

    Article  CAS  Google Scholar 

  19. Thomson, N. H. The substructure of immunoglobulin G resolved to 25 kDa using amplitude modulation AFM in air. Ultramicroscopy 105, 103–110 (2005).

    Article  CAS  Google Scholar 

  20. Preiner, J. et al. Imaging and detection of single molecule recognition events on organic semiconductor surfaces. Nano Lett. 9, 571–575 (2008).

    Article  Google Scholar 

  21. Martinez, N. F. et al. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19, 384011 (2008).

    Article  CAS  Google Scholar 

  22. Makky, A. et al. Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy. Sens. Actuat. B 162, 269–277 (2011).

    Article  Google Scholar 

  23. Fukuma, T., Kobayashi, K., Matsushige, K. & Yamada, H. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87, 034101 (2005).

    Article  Google Scholar 

  24. Ido, S. et al. Beyond the helix pitch: Direct visualization of native DNA in aqueous solution. ACS Nano 7, 1817–1822 (2013).

    Article  CAS  Google Scholar 

  25. Hansma, H. G. & Laney, D. E. DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy. Biophys. J. 70, 1933–1939 (1996).

    Article  CAS  Google Scholar 

  26. Padlan, E. A. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217 (1994).

    Article  CAS  Google Scholar 

  27. Pinteric, L., Painter, R. H. & Connell, G. E. Ultrastructure of the Fc fragment of human immunonoglobulin G. Immunochemistry 8, 1041–1045 (1971).

    Article  CAS  Google Scholar 

  28. Burton, D. R. Immunoglobulin G: Functional sites. Mol. Immunol. 22, 161–206 (1985).

    Article  CAS  Google Scholar 

  29. Yagi, H., Takahashi, N., Yamaguchi, Y. & Kato, K. Temperature-dependent isologous Fab–Fab interaction that mediates cryocrystallization of a monoclonal immunoglobulin G. Mol. Immunol. 41, 1211–1215 (2004).

    Article  CAS  Google Scholar 

  30. Kanai, S., Liu, J., Patapoff, T. W. & Shire, S. J. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab–Fab interaction that impacts solution viscosity. J. Pharm. Sci. 97, 4219–4227 (2008).

    Article  CAS  Google Scholar 

  31. Reidler, J., Uzgiris, E. E. & Kornberg, R. D. in Handbook of Experimental Immunology Vol. 1 (eds Ouchterlony, O., Nilsson, L. & Weir, D. M.) Ch. 17, 17.11–17.15 (Blackwell, 1967).

    Google Scholar 

  32. Uzgiris, E. E. & Kornberg, R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen–antibody–complement complexes. Nature 301, 125–129 (1983).

    Article  CAS  Google Scholar 

  33. Kuznetsov, Y. G., Day, J., Newman, R. & McPherson, A. Chimeric human–simian anti-CD4 antibodies form crystalline high symmetry particles. J. Struct. Biol. 131, 108–115 (2000).

    Article  CAS  Google Scholar 

  34. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the SENTAN Program of the Japan Science and Technology Agency, and the Global COE Program of the Japanese Society for the Promotion of Science. S.I. was supported by a Japan Society for the Promotion of Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.I. performed AFM imaging, analysed data and wrote the paper. H. Kimiya prepared the biological sample and wrote the paper. K.K. developed AFM instruments and electronics and wrote the paper. H. Kominami performed AFM imaging. K.M. designed the study. H.Y. designed the study, developed AFM instruments, analysed the data and wrote the paper. All authors have discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hirofumi Yamada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ido, S., Kimiya, H., Kobayashi, K. et al. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nature Mater 13, 264–270 (2014). https://doi.org/10.1038/nmat3847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing