Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unidirectional spin-wave heat conveyer

Abstract

When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of spin-wave heat conveyer.
Figure 2: Spin-wave spectroscopy for a Y3Fe5O12 disk.
Figure 3: Observation of spin-wave-induced remote heat generation.
Figure 4: Observation of heat generation in a thin Y3Fe5O12 film.

Similar content being viewed by others

References

  1. Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).

    Article  CAS  Google Scholar 

  2. Bauer, G. E. W., MacDonald, A. H. & Maekawa, S. Spin caloritronics. Solid State Commun. 150, 459–460 (2010).

    Article  CAS  Google Scholar 

  3. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  4. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  CAS  Google Scholar 

  5. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    Article  CAS  Google Scholar 

  6. Yu, H., Granville, S., Yu, D. P. & Ansermet, J-Ph. Evidence for thermal spin-transfer torque. Phys. Rev. Lett. 104, 146601 (2010).

    Article  Google Scholar 

  7. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  CAS  Google Scholar 

  8. Maekawa, S., Valenzuela, S. O., Saitoh, E. & Kimura, T. Spin Current (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  9. Bauer, G. E. W., Bretzel, S., Brataas, A. & Tserkovnyak, Y. Nanoscale magnetic heat pumps and engines. Phys. Rev. B 81, 024427 (2010).

    Article  Google Scholar 

  10. Padrón-Hernández, E., Azevedo, A. & Rezende, S. M. Amplification of spin waves by thermal spin-transfer torque. Phys. Rev. Lett. 107, 197203 (2011).

    Article  Google Scholar 

  11. Lu, L., Sun, Y., Jantz, M. & Wu, M. Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer. Phys. Rev. Lett. 108, 257202 (2012).

    Article  Google Scholar 

  12. Jungfleisch, M. B. et al. Heat-induced damping modification in yttrium iron garnet/platinum hetero-structures. Appl. Phys. Lett. 102, 062417 (2013).

    Article  Google Scholar 

  13. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  14. Patton, C. E. Magnetic excitations in solids. Phys. Rep. 103, 251–315 (1984).

    Article  CAS  Google Scholar 

  15. Stancil, D. D. & Prabhakar, A. Spin Waves: Theory and Applications (Springer, 2009).

    Google Scholar 

  16. Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961).

    Article  Google Scholar 

  17. Tohyama, S. et al. New thermally isolated pixel structure for high resolution (640 × 480) uncooled infrared focal plane arrays. Opt. Eng. 45, 014001 (2006).

    Article  Google Scholar 

  18. Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nature Mater. 10, 737–741 (2011).

    Article  CAS  Google Scholar 

  19. Schneider, T., Serga, A. A., Neumann, T., Hillebrands, B. & Kostylev, M. P. Phase reciprocity of spin-wave excitation by a microstrip antenna. Phys. Rev. B 77, 214411 (2008).

    Article  Google Scholar 

  20. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    Article  Google Scholar 

  21. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, 1996).

    Google Scholar 

  22. Chumak, A. V. et al. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 100, 082405 (2012).

    Article  Google Scholar 

  23. Adachi, H., Ohe, J., Takahashi, S. & Maekawa, S. Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Phys. Rev. B 83, 094410 (2011).

    Article  Google Scholar 

  24. Adachi, H., Uchida, K., Saitoh, E., Ohe, J., Takahashi, S. & Maekawa, S. Gigantic enhancement of spin Seebeck effect by phonon drag. Appl. Phys. Lett. 97, 252506 (2011).

    Article  Google Scholar 

  25. Adachi, H., Uchida, K., Saitoh, E. & Maekawa, S. Theory of the spin Seebeck effect. Rep. Prog. Phys. 76, 036501 (2013).

    Article  Google Scholar 

  26. Xiao, J., Bauer, G. E. W., Uchida, K., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Article  Google Scholar 

  27. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 252506 (2010).

    Article  Google Scholar 

  28. Jaworski, C. M. et al. Spin-Seebeck effect: A phonon driven spin distribution. Phys. Rev. Lett. 106, 186601 (2011).

    Article  CAS  Google Scholar 

  29. Maekawa, S. Concepts in Spin Electronics (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  30. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. A. Serga, G. E. W. Bauer and S. Takahashi for valuable discussions. The work at Tohoku University was supported by CREST-JST ‘Creation of Nano-systems with Novel Functions through Process Integration’, Japan, PRESTO-JST ‘Phase Interfaces for Highly Efficient Energy Utilization’, Japan, a Grant-in-Aid for Scientific Research A (24244051), a Grant-in-Aid for Scientific Research on Innovative Areas (22109003), from MEXT, Japan. The work at Technische Universität Kaiserslautern was supported by Deutsche Forschungsgemeinschaft (DFG) within Priority Program 1538 ‘Spin Caloric Transport’.

Author information

Authors and Affiliations

Authors

Contributions

T.A., K.U. and K.Y. designed the experiments and collected the data for the polycrystalline Y3Fe5O12 sample in Figs 13, and V.I.V., A.V.C. and M.B.J. designed the experiments and collected the data for the single-crystalline Y3Fe5O12 sample in Fig. 4. E.S. and B.H. planned and supervised the study. K.H. and Y.K. supported the experiments. T.A., V.I.V., K.H. and J.O. performed the analysis of the data. S.M., H.A. and B.H. developed the theory. T.A., V.I.V., E.S. and B.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to T. An.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1168 kb)

Supplementary Information

Supplementary Movie S1 (MP4 22964 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, T., Vasyuchka, V., Uchida, K. et al. Unidirectional spin-wave heat conveyer. Nature Mater 12, 549–553 (2013). https://doi.org/10.1038/nmat3628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing