Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesostructured thin films as electrocatalysts with tunable composition and surface morphology

Abstract

Among the most challenging issues in technologies for electrochemical energy conversion are the insufficient activity of the catalysts for the oxygen reduction reaction, catalyst degradation and carbon-support corrosion. In an effort to address these barriers, we aimed towards carbon-free multi/bimetallic materials in the form of mesostructured thin films with tailored physical properties. We present here a new class of metallic materials with tunable near-surface composition, morphology and structure that have led to greatly improved affinity for the electrochemical reduction of oxygen. The level of activity for the oxygen reduction reaction established on mesostructured thin-film catalysts exceeds the highest value reported for bulk polycrystalline Pt bimetallic alloys, and is 20-fold more active than the present state-of-the-art Pt/C nanoscale catalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CV and STM images of Pt and Pt alloy 20-nm thin films deposited on a glassy carbon substrate.
Figure 2: HRSEM and TEM micrographs of the NSTF whiskers.
Figure 3: In situ transformation from nanostructured into mesostructured thin film during annealing.
Figure 4: CV on the Pt-based thin-film catalysts.
Figure 5: Activity map for the ORR obtained for different classes of Pt-based materials.

Similar content being viewed by others

References

  1. Borup, R. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007).

    Article  CAS  Google Scholar 

  2. Wagner, F. T., Lakshmanan, B. & Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010).

    Article  CAS  Google Scholar 

  3. Adzic, R. R. et al. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007).

    Article  CAS  Google Scholar 

  4. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  5. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  6. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  7. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  8. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    Article  CAS  Google Scholar 

  9. Zhang, J., Sasaki, K., Sutter, E. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007).

    Article  CAS  Google Scholar 

  10. Nilekar, A. et al. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top. Catal. 46, 276–284 (2007).

    Article  CAS  Google Scholar 

  11. Gorlin, Y. & Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010).

    Article  CAS  Google Scholar 

  12. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  Google Scholar 

  13. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nature Mater. 9, 904–907 (2010).

    Article  CAS  Google Scholar 

  14. Wang, C. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 133, 14396–14403 (2011).

    Article  CAS  Google Scholar 

  15. Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2010).

    Article  Google Scholar 

  16. Ferreira, P. J. et al. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells—A mechanistic investigation. J. Electrochem. Soc. 152, A2256–A2271 (2005).

    Article  Google Scholar 

  17. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  18. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater. 6, 241–247 (2007).

    Article  CAS  Google Scholar 

  19. Stamenkovic, V., Schmidt, T. J., Ross, P. N. & Markovic, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002).

    Article  CAS  Google Scholar 

  20. Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006).

    Article  CAS  Google Scholar 

  21. Koh, S. & Strasser, P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007).

    Article  CAS  Google Scholar 

  22. Zhang, J. L., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005).

    Article  CAS  Google Scholar 

  23. Mukerjee, S. & Srinivasan, S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton-exchange membrane fuel-cells. J. Electroanal. Chem. 357, 201–224 (1993).

    Article  CAS  Google Scholar 

  24. Toda, T., Igarashi, H., Uchida, H. & Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750–3756 (1999).

    Article  CAS  Google Scholar 

  25. Mavrikakis, M. Computational methods: A search engine for catalysts. Nature Mater. 5, 847–848 (2006).

    Article  CAS  Google Scholar 

  26. Mani, P., Srivastava, R. & Strasser, P. Dealloyed Pt–Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2008).

    Article  CAS  Google Scholar 

  27. Wang, C. et al. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: Size-dependent activity. J. Phys. Chem. C 113, 19365–19368 (2009).

    Article  CAS  Google Scholar 

  28. Wang, C. et al. Monodisperse Pt3Co nanoparticles as electrocatalyst: The effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys. Chem. Chem. Phys. 12, 6933–6939 (2010).

    Article  CAS  Google Scholar 

  29. Van der Vliet, D. et al. Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. Electrochim. Acta 56, 8695–8699 (2011).

    Article  CAS  Google Scholar 

  30. Zeis, R., Mathur, A., Fritz, G., Lee, J. & Erlebacher, J. Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources 165, 65–72 (2007).

    Article  CAS  Google Scholar 

  31. Habas, S. E., Lee, H., Radmilovic, V., Somorjai, G. A. & Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Mater. 6, 692–697 (2007).

    Article  CAS  Google Scholar 

  32. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  Google Scholar 

  33. Inaba, M. et al. Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim. Acta 52, 1632–1638 (2006).

    Article  CAS  Google Scholar 

  34. Paulus, U. A. et al. Oxygen reduction on carbon-supported Pt–Ni and Pt–Co alloy catalysts. J. Phys. Chem. B 106, 4181–4191 (2002).

    Article  CAS  Google Scholar 

  35. Antonietti, M. & Ozin, G. A. Promises and problems of mesoscale materials chemistry or why meso? Chem. Eur. J. 10, 28–41 (2004).

    Article  CAS  Google Scholar 

  36. Mukerjee, S., Srinivasan, S., Soriaga, M. P. & Mcbreen, J. Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction—an in-situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995).

    Article  CAS  Google Scholar 

  37. Debe, M. K. & Drube, A. R. Structural characteristics of a uniquely nanostructured organic thin-film. J. Vacuum Sci. Technol. B 13, 1236–1241 (1995).

    Article  CAS  Google Scholar 

  38. Debe, M. K. & Poirier, R. J. Postdeposition growth of a uniquely nanostructured organic film by vacuum annealing. J. Vacuum Sci. Tech. A 12, 2017–2022 (1994).

    Article  CAS  Google Scholar 

  39. Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D. & Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 161, 1002–1011 (2006).

    Article  CAS  Google Scholar 

  40. Debe, M. K. in Handbook of Fuel Cells– Fundamentals, Technology and Applications (eds Vielstich, W., Lamm, A. & Gasteiger, H. A.) Ch. 45 (Wiley, 2003).

    Google Scholar 

  41. Debe, M. K. et al. Extraordinary oxygen reduction activity of Pt3Ni7 . J. Electrochem. Soc. 158, B910–B918 (2011).

    Article  Google Scholar 

  42. Somorjai, G. A. Surface science and catalysis. Science 227, 902–908 (1985).

    Article  CAS  Google Scholar 

  43. Tao, A. R., Habas, S. & Yang, P. D. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).

    Article  CAS  Google Scholar 

  44. Lai, S. C. S. & Koper, M. T. M. The influence of surface structure on selectivity in the ethanol electro-oxidation reaction on platinum. J. Phys. Chem. Lett. 1, 1122–1125 (2010).

    Article  CAS  Google Scholar 

  45. Wadayama, T. et al. Oxygen reduction reaction activities of Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Electrochem. Commun. 12, 1112–1115 (2010).

    Article  CAS  Google Scholar 

  46. Gancs, L., Kobayashi, T., Debe, M. K., Atanasoski, R. & Wieckowski, A. Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: A HRTEM study. Chem. Mater. 20, 2444–2454 (2008).

    Article  CAS  Google Scholar 

  47. Subbaraman, R., Strmcnik, D., Paulikas, A. P., Stamenkovic, V. R. & Markovic, N. M. Oxygen reduction reaction at three-phase interfaces. ChemPhysChem 11, 2825–2833 (2010).

    Article  CAS  Google Scholar 

  48. Debe, M. K. et al. Nanostructured thin film catalysts for PEM fuel cells by vacuum web coating. (Society of Vacuum Coaters—50th Annual Technical Conference Proceedings, 2007).

Download references

Acknowledgements

The research was conducted at Argonne National Laboratory, which is a US Department of Energy Office of Science Laboratory operated by UChicago Argonne, LLC under contract no. DE-AC02-06CH11357. The portion of work related to extended single-crystalline and thin-film surfaces was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The portion of work exploring practical thin-film-based electrocatalysts was supported by the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. The authors thank Hitachi High Technologies America for the access to high-resolution electron microscopy facilities and J. Pearson and A. P. Paulikas for supporting thin film deposition experiments. V.R.S. is grateful to S. D. Bader and G.W. Crabtree for productive discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.F.V., C.W. and V.R.S. designed the experiments. C.W., D.F.V., D.T., D.S., X.F.Z., R.T.A., M.K.D. and V.R.S. carried out the experimental work. D.F.V., C.W., M.K.D., N.M.M. and V.R.S. discussed the results and V.R.S. wrote the manuscript.

Corresponding authors

Correspondence to Dennis F. van der Vliet, Chao Wang or Vojislav R. Stamenkovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Vliet, D., Wang, C., Tripkovic, D. et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Mater 11, 1051–1058 (2012). https://doi.org/10.1038/nmat3457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing