Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liquid–liquid transition without macroscopic phase separation in a water–glycerol mixture

Abstract

The existence of more than two liquid states in a single-component substance and the ensuing liquid–liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT inpure water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pattern evolution in an LLT.
Figure 2: Structural relaxation and glass transition in liquids I and II.
Figure 3: Microscopic signs of LLT.
Figure 4: State diagram of water/glycerol mixtures.

Similar content being viewed by others

References

  1. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  CAS  Google Scholar 

  2. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  3. Angell, C. A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582–587 (2008).

    Article  CAS  Google Scholar 

  4. Debenedetti, P. G. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003).

    Article  CAS  Google Scholar 

  5. Tanaka, H. Simple view of waterlike anomalies of atomic liquids with directional bonding. Phys. Rev. B 66, 064202 (2002).

    Article  Google Scholar 

  6. Mishima, O., Calvert, L. D. & Whalley, E. An apparent first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985).

    Article  CAS  Google Scholar 

  7. Sastry, S., Debenedetti, P. G., Sciortino, F. & Stanley, H. E. Singularity-free interpretation of the thermodynamics of supercooled water. Phys. Rev. E 53, 6144–6154 (1996).

    Article  CAS  Google Scholar 

  8. Tanaka, H. Thermodynamic anomaly and polyamorphism of water. Europhys. Lett. 50, 340–346 (2000).

    Article  CAS  Google Scholar 

  9. Koza, M. M., Schober, H., Fischer, H. E., Hansen, T. & Fujara, F. Kinetics of the high- to low-density amorphous water transition. J. Phys. Condens. Matter 15, 321–332 (2003).

    Article  CAS  Google Scholar 

  10. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).

    Article  CAS  Google Scholar 

  11. Xu, L. et al. Relation between the widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl Acad. Sci. USA 102, 16558–16562 (2005).

    Article  CAS  Google Scholar 

  12. Tanaka, H. A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: water as an example. J. Phys. Condens. Matter 15, L703–L711 (2003).

    Article  CAS  Google Scholar 

  13. Poole, P. H., Grande, T., Angell, C. A. & McMillan, P. F. Polymorphic phase transitions in liquids and glasses. Science 275, 322–324 (1997).

    Article  CAS  Google Scholar 

  14. Tanaka, H. General view of a liquid–liquid phase. Phys. Rev. E 62, 6968–6976 (2000).

    Article  CAS  Google Scholar 

  15. Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O. & Yamakata, M. A first-order liquid–liquid transition in phosphorus. Nature 403, 170–173 (2000).

    Article  CAS  Google Scholar 

  16. Sastry, S. & Angell, C. A. Liquid–liquid phase transition in supercooled silicon. Nature Mater. 2, 739–743 (2003).

    Article  CAS  Google Scholar 

  17. Vasisht, V. V., Saw, S. & Sastry, S. Liquid–liquid critical point in supercooled silicon. Nature Phys. 7, 549–553 (2011).

    Article  CAS  Google Scholar 

  18. Aasland, S. & McMillan, P. F. Density-driven liquid–liquid phase-separation in the system Al2O3-Y2O3 . Nature 369, 633–639 (1994).

    Article  CAS  Google Scholar 

  19. Greaves, G. N. et al. Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science 322, 566–570 (2008).

    Article  CAS  Google Scholar 

  20. Cohen, I. et al. A low temperature amorphous phase in fragile glass-forming substance. J. Phys. Chem 100, 8518–8526 (1996).

    Article  CAS  Google Scholar 

  21. Tanaka, H., Kurita, R. & Mataki, H. Liquid–liquid transition in the molecular liquid triphenyl phosphite. Phys. Rev. Lett. 92, 025701 (2004).

    Article  Google Scholar 

  22. Kurita, R. & Tanaka, H. Critical-like phenomena associated with liquid–liquid transition in a molecular liquid. Science 306, 845–848 (2004).

    Article  CAS  Google Scholar 

  23. Kurita, R. & Tanaka, H. On the abundance and general nature of the liquid–liquid phase transition in molecular systems. J. Phys. Condens. Matter 17, L293–L302 (2005).

    Article  CAS  Google Scholar 

  24. Kurita, R., Murata, K. & Tanaka, H. Control of fluidity and miscibility of a binary liquid mixture by the liquid–liquid transition. Nature Mater. 7, 647–652 (2008).

    Article  CAS  Google Scholar 

  25. Murata, K. & Tanaka, H. Surface-wetting effects on the liquid–liquid transition of a single-component molecular liquid. Nature Commun. 1, 16 (2010).

    Article  Google Scholar 

  26. Hedoux, A., Guinet, Y., Descamps, M. & Benabou, A. Raman scattering investigation of the glaciation process in triphenyl phosphite. J. Phys. Chem. B 104, 11774–11780 (2000).

    Article  CAS  Google Scholar 

  27. Liu, L., Chen, S. H., Faraone, A., Yen, C. W. & Mou, C. Y. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802 (2005).

    Article  Google Scholar 

  28. Mallamace, F. et al. Transport properties of supercooled confined water. Eur. Phys. J. Special Topics 161, 19–33 (1008).

    Article  Google Scholar 

  29. Doster, W. et al. Dynamical transition of protein-hydration water. Phys. Rev. Lett. 104, 098101 (2010).

    Article  CAS  Google Scholar 

  30. Mancinelli, R. The effect of confinement on water structure. J. Phys. Condens. Matter 22, 404213 (2010).

    Article  CAS  Google Scholar 

  31. Morineau, D. & Alba-Simionesco, C. Does molecular self-association survive in nanochannels? J. Phys. Chem. Lett. 1, 1155–1159 (2010).

    Article  CAS  Google Scholar 

  32. Findenegg, G. H., Jähnert, S., Akcakayiran, D. & Schreiber, A. Freezing and melting of water confined in silica nanopores. ChemPhysChem. 9, 2651–2659 (2008).

    Article  CAS  Google Scholar 

  33. Davis-Searles, P. R., Saunders, A. J., Erie, D. A., Winzor, D. J. & Pielak, G. J. Interpreting the effects of small uncharged solutes on protein-folding equilibria. Annu. Rev. Biophys. Biomol. Struct. 30, 271–306 (2001).

    Article  CAS  Google Scholar 

  34. Chatterjee, S. & Debenedetti, P. G. Fluid-phase behavior of binary mixtures in which one component can have two critical point. J. Chem. Phys. 124, 154503 (2006).

    Article  Google Scholar 

  35. Mishima, O. Application of polyamorphism in water to spontaneous crystallization of emulsified LiCl–H2O solution. J. Chem. Phys. 123, 154506 (2005).

    Article  Google Scholar 

  36. Mishima, O. Phase separation in dilute LiCl–H2O solution related to the polyamorphism of liquid water. J. Chem. Phys. 126, 244507 (2007).

    Article  Google Scholar 

  37. Le, L. & Molinero, V. Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water. J. Phys. Chem. A 115, 5900–5907 (2011).

    Article  CAS  Google Scholar 

  38. Angell, C. A., Borick, S. & Grabow, M. Glass transition and first order liquid-metal-to-semiconductor transitions in 4-5-6 covalent systems. J. Non-Cryst. Solids 205–207, 463–471 (1996).

    Article  Google Scholar 

  39. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  CAS  Google Scholar 

  40. Kurita, R. & Tanaka, H. Control of the fragility of a glass-forming liquid using the liquid–liquid phase transition. Phys. Rev. Lett. 95, 065701 (2005).

    Article  Google Scholar 

  41. Kurita, R. & Tanaka, H. Kinetics of the liquid–liquid transition of triphenyl phosphite. Phys. Rev. B 73, 104202 (2006).

    Article  Google Scholar 

  42. Suzuki, Y. & Tominaga, Y. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure. J. Chem. Phys. 133, 164508 (2010).

    Article  Google Scholar 

  43. Mudalige, A. & Pemberton, J. E. Raman spectroscopy of glycerol/D2O solutions. Vib. Spectrosc. 45, 27–35 (2007).

    Article  CAS  Google Scholar 

  44. Hansen, T. C., Koza, M. M. & Kuhs, W. F. Formation and annealing of cubic ice: I. Modelling of stacking fault. J. Phys. Condens. Matter 20, 285104 (2008).

    Article  Google Scholar 

  45. Johari, G. P. Water’s size-dependent freezing to cubic ice. J. Chem. Phys. 122, 194504 (2005).

    Article  CAS  Google Scholar 

  46. Jenniskens, P. & Blake, D. F. Crystallization of amorphous water ice in the solar system. Astrophys. J. 473, 1104–1113 (1996).

    Article  CAS  Google Scholar 

  47. Moore, E. B. & Molinero, V. Ice crystallization in water’s ‘no-man’s land’. J. Chem. Phys. 132, 244504 (2010).

    Article  Google Scholar 

  48. Kivelson, D. & Tarjus, G. H2O below 277 K: A novel picture. J. Phys. Chem. B 105, 6620–6627 (2001).

    Article  CAS  Google Scholar 

  49. Kobayashi, M. & Tanaka, H. Possible link of the V-shaped phase diagram to the glass-forming ability and fragility in a water-salt mixture. Phys. Rev. Lett. 106, 125703 (2011).

    Article  Google Scholar 

  50. Mishima, O. Volume of supercooled water under pressure and liquid–liquid critical point. J. Chem. Phys. 133, 144503 (2010).

    Article  Google Scholar 

  51. Miyata, K. & Kanno, H. Supercooling behavior of aqueous solutions of alcohols and saccharides. J. Mol. Liq. 119, 189–193 (2005).

    Article  CAS  Google Scholar 

  52. Rasmussen, D. H. & MacKenzie, A. P. Water Structure at the Water-Polymer Interface (Plenum, 1972).

    Google Scholar 

  53. Olsen, N. B. Scaling of β-relaxation in the equilibrium liquid state of sorbitol. J. Non-Cryst. Solids 235–237, 399–405 (1998).

    Article  Google Scholar 

  54. Dyre, J. C. & Olsen, N. B. Minimal model for beta relaxation in viscous liquids. Phys. Rev. Lett. 91, 155703 (2003).

    Article  Google Scholar 

  55. Lane, L. B. Freezing points of glycerol and its aqueous solutions. Ind. Eng. Chem. 17, 924 (1925).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived the research, K.M. performed experiments and analysed data, and K.M. and H.T. wrote the manuscript.

Corresponding author

Correspondence to Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, Ki., Tanaka, H. Liquid–liquid transition without macroscopic phase separation in a water–glycerol mixture. Nature Mater 11, 436–443 (2012). https://doi.org/10.1038/nmat3271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing