Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Supercooled liquids

Clearing the water

Subjects

Evidence of a transition between two coexisting liquids of the same composition in a water–glycerol mixture, where glycerol prevents the crystallization of water, provides a unique link to an elusive liquid–liquid transition in pure water.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 'rule of stages' postulated by Ostwald in 1897 prescribes that crystallization takes the fastest path to reach the lowest free-energy state.
Figure 2: Phase diagram of glycerol–water mixtures showing, for the HDL-like solution, the liquid–crystal equilibrium boundary (binodal line; black squares), the stability limit (spinodal line; black circles and blue line), the homogeneous-nucleation boundary for ice Ic (purple) and the glass transition temperature (red).

References

  1. Gibson, H. M. & Wilding, N. B. Phys. Rev. E 73, 061507 (2006).

    Article  CAS  Google Scholar 

  2. Xu, L., Buldyrev, S. V., Giovambattista, N., Angell, C. A. & Stanley, H. E. J. Chem. Phys. 130, 054505 (2009).

    Article  Google Scholar 

  3. Mishima, O. J. Chem. Phys. 100, 5910–5912 (1994).

    Article  CAS  Google Scholar 

  4. Angell, C. A. Annu. Rev. Phys. Chem. 55, 559–583 (2004).

    Article  Google Scholar 

  5. Loerting, T. & Giovambattista, N. J. Phys. Condens. Matter 18, R919–R977 (2006).

    Article  CAS  Google Scholar 

  6. Winkel, K., Mayer, E. & Loerting, T. J. Phys. Chem. B 115, 14141–14148 (2011).

    Article  CAS  Google Scholar 

  7. Murata, K. & Tanaka, H. Nature Mater. 11, 436–443 (2012).

    Article  CAS  Google Scholar 

  8. Katayama, Y. et al. Nature 403, 170–173 (2000).

    Article  CAS  Google Scholar 

  9. Kurita, R. & Tanaka, H. Science 306, 845–848 (2004).

    Article  CAS  Google Scholar 

  10. Kurita, R., Murata, K. & Tanaka, H. Nature Mater. 7, 647–652 (2008).

    Article  CAS  Google Scholar 

  11. Mishima, O. J. Chem. Phys. 126, 244507 (2007).

    Article  Google Scholar 

  12. Chatterjee, S. & Debenedetti, P. G. J. Chem. Phys. 124, 154503 (2006).

    Article  Google Scholar 

  13. Le, L. & Molinero, V. J. Phys. Chem. A 115, 5900–5907 (2011).

    Article  CAS  Google Scholar 

  14. Tanaka, H. Phys. Rev. E 62, 6968–6976 (2000).

    Article  CAS  Google Scholar 

  15. Kurita, R. & Tanaka, H. J. Phys. Condens. Matter 17, L293–L302 (2005).

    Article  CAS  Google Scholar 

  16. Matyushov, D. V. & Angell, C. A. J. Chem. Phys. 126, 094501 (2007).

    Article  Google Scholar 

  17. Sepúlveda, A., Leon-Gutierrez, E., Gonzalez-Silveira, M., Clavaguera-Mora, M. T. & Rodríguez-Viejo, J. J. Phys. Chem. Lett. 3, 919–923 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austen Angell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angell, A. Clearing the water. Nature Mater 11, 362–364 (2012). https://doi.org/10.1038/nmat3319

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing