Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery

Abstract

Many synthetic polycationic vectors for non-viral gene delivery show high efficiency in vitro, but their usually excessive charge density makes them toxic for in vivo applications. Here we describe the synthesis of a series of high molecular weight terpolymers with low charge density, and show that they exhibit efficient gene delivery, some surpassing the efficiency of the commercial transfection reagents Polyethylenimine and Lipofectamine 2000. The terpolymers were synthesized via enzyme-catalyzed copolymerization of lactone with dialkyl diester and amino diol, and their hydrophobicity adjusted by varying the lactone content and by selecting a lactone comonomer of specific ring size. Targeted delivery of the pro-apoptotic TRAIL gene to tumour xenografts by one of the terpolymers results in significant inhibition of tumour growth, with minimal toxicity both in vitro and in vivo. Our findings suggest that the gene delivery ability of the terpolymers stems from their high molecular weight and increased hydrophobicity, which compensates for their low charge density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characteristics of polymers and terpolymer/DNA complexes.
Figure 2: Gene delivery efficiency and toxicity of terpolymer.
Figure 3: Coating III-20% PDL/DNA polyplexes with peptide polyE–mRGD for improved stability in vitro and gene delivery in vivo.
Figure 4: Evaluation of coated III-20%PDL/TRAIL DNA polyplexes in vivo.

Similar content being viewed by others

References

  1. Felgner, P. L. et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  Google Scholar 

  2. Templeton, N. S. et al. Improved DNA: Liposome complexes for increased systemic delivery and gene expression. Nature Biotechnol. 15, 647–652 (1997).

    Article  CAS  Google Scholar 

  3. Chen, Y., Bathula, S. R., Yang, Q. & Huang, L. Targeted nanoparticles deliver siRNA to melanoma. J. Invest. Dermatol. 130, 2790–2798 (2010).

    Article  CAS  Google Scholar 

  4. Al-Dosari, M. S. & Gao, X. Nonviral gene delivery: Principle, limitations, and recent progress. Am. Assoc. Pharm. Sci. J. 11, 671–681 (2009).

    CAS  Google Scholar 

  5. Tros de Ilarduya, C., Sun, Y. & Duzgunes, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 40, 159–170 (2010).

    Article  CAS  Google Scholar 

  6. Nicol, F. et al. Poly-L-glutamate, an anionic polymer, enhances transgene expression for plasmids delivered by intramuscular injection with in vivo electroporation. Gene Ther. 9, 1351–1358 (2002).

    Article  CAS  Google Scholar 

  7. Schlegel, A. et al. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J. Control. Release 152, 393–401 (2011).

    Article  CAS  Google Scholar 

  8. Liu, D. X., Gao, X. & Kim, K. S. Nonviral gene delivery: What we know and what is next. Am. Assoc. Pharm. Sci. J. 9, E92–E104 (2007).

    Google Scholar 

  9. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  Google Scholar 

  10. Gao, X. et al. The association of autophagy with polyethylenimine-induced cytotoxity in nephritic and hepatic cell lines. Biomaterials 32, 8613–8625 (2011).

    Article  CAS  Google Scholar 

  11. Felgner, J. H. et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561 (1994).

    CAS  Google Scholar 

  12. Kafil, V. & Omidi, Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in A431 cells. BioImpacts 1, 23–30 (2011).

    CAS  Google Scholar 

  13. Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006).

    Article  CAS  Google Scholar 

  14. Liu, J., Jiang, Z., Zhou, J., Zhang, S. M. & Saltzman, W. M. Enzyme-synthesized poly(amine-co-esters) as nonviral vectors for gene delivery. J. Biomed. Mater. Res. A 96A, 456–465 (2011).

    Article  CAS  Google Scholar 

  15. Jiang, Z. Lipase-catalyzed synthesis of poly(amine-co-esters) via copolymerization of diester with amino-substituted diol. Biomacromolecules 11, 1089–1093 (2010).

    Article  CAS  Google Scholar 

  16. Wang, Y., Wang, L. S., Goh, S. H. & Yang, Y. Y. Synthesis and characterization of cationic micelles self-assembled from a biodegradable copolymer for gene delivery. Biomacromolecules 8, 1028–1037 (2007).

    Article  CAS  Google Scholar 

  17. Wang, Y. et al. The self-assembly of biodegradable cationic polymer micelles as vectors for gene transfection. Biomaterials 28, 5358–5368 (2007).

    Article  CAS  Google Scholar 

  18. Kiang, T., Wen, J., Lim, H. W. & Leong, K. W. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25, 5293–5301 (2004).

    Article  CAS  Google Scholar 

  19. DeRouchey, J., Netz, R. R. & Radler, J. O. Structural investigations of DNA-polycation complexes. Eur. Phys. J. E 16, 17–28 (2005).

    Article  CAS  Google Scholar 

  20. Piest, M. & Engbersen, J. F. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery. J. Control. Release 148, 83–90 (2010).

    Article  CAS  Google Scholar 

  21. Liu, Z., Zhang, Z., Zhou, C. & Jiao, Y. Hydrophobic modifications of cationic polymers for gene delivery. Prog. Polym. Sci. 35, 1144–1162 (2010).

    Article  CAS  Google Scholar 

  22. Kuhn, P. S., Levin, Y. & Barbosa, M. C. Charge inversion in DNA-amphiphile complexes: Possible application to gene therapy. Physica A 274, 8–18 (1999).

    Article  CAS  Google Scholar 

  23. Alvarez-Lorenzo, C. et al. Biophysical characterization of complexation of DNA with block copolymers of poly(2-dimethylaminoethyl) methacrylate, poly(ethylene oxide), and poly(propylene oxide). Langmuir 21, 5142–5148 (2005).

    Article  CAS  Google Scholar 

  24. Takigawa, D. Y. & Tirrell, D. A. Interactions of synthetic-polymers with cell-membranes and model membrane systems.6. Disruption of phospholipid packing by branched poly(ethylenimine) derivatives. Macromolecules 18, 338–342 (1985).

    Article  CAS  Google Scholar 

  25. Thomas, M. & Klibanov, A. M. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA 99, 14640–14645 (2002).

    Article  CAS  Google Scholar 

  26. Bajaj, A., Kondaiah, P. & Bhattacharya, S. Synthesis and gene transfection efficacies of PEI-cholesterol-based lipopolymers. Bioconjug. Chem. 19, 1640–1651 (2008).

    Article  CAS  Google Scholar 

  27. Eliyahu, H. et al. Novel dextran-spermine conjugates as transfecting agents: Comparing water-soluble and micellar polymers. Gene Ther. 12, 494–503 (2005).

    Article  CAS  Google Scholar 

  28. Gabrielson, N. P. & Pack, D. W. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules 7, 2427–2435 (2006).

    Article  CAS  Google Scholar 

  29. Jiang, Z. Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactone, dialkyl diester, and diol. Biomacromolecules 9, 3246–3251 (2008).

    Article  CAS  Google Scholar 

  30. Mazzocchetti, L., Scandola, M. & Jiang, Z. Z. Enzymatic synthesis and structural and thermal properties of poly(omega-pentadecalactone-co-butylene-co-succinate). Macromolecules 42, 7811–7819 (2009).

    Article  CAS  Google Scholar 

  31. Stridsberg, K. M., Ryner, M. & Albertsson, A. C. Controlled ring-opening polymerization: Polymers with designed macromolecular architecture. Degrad. Aliphatic Polyest. 157, 41–65 (2002).

    Article  CAS  Google Scholar 

  32. Nomura, R., Ueno, A. & Endo, T. Anionic ring-opening polymerization of macrocyclic esters. Macromolecules 27, 620–621 (1994).

    Article  CAS  Google Scholar 

  33. Hefetz, A., Fales, H. M. & Batra, S. W. T. Natural polyesters—dufours gland macrocyclic lactones form brood cell laminesters in colletes bees. Science 204, 415–417 (1979).

    Article  CAS  Google Scholar 

  34. Hefetz, A., Bergstrom, G. & Tengo, J. Species, individual and Kin specific blends in dufours gland secretions of halictine bees—chemical evidence. J. Chem. Ecol. 12, 197–208 (1986).

    Article  CAS  Google Scholar 

  35. Duffield, R. M., Laberge, W. E., Cane, J. H. & Wheeler, J. W. Exocrine secretions of bees. 4. Macrocyclic lactones and isopentenyl esters in dufours gland secretions of nomia bees (hymenoptera, halictidae). J. Chem. Ecol. 8, 535–543 (1982).

    Article  CAS  Google Scholar 

  36. Sugahara, K. N. et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16, 510–520 (2009).

    Article  CAS  Google Scholar 

  37. Teesalu, T., Sugahara, K. N., Kotamraju, V. R. & Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl Acad. Sci. USA 106, 16157–16162 (2009).

    Article  CAS  Google Scholar 

  38. Green, J. J. et al. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 7, 874–879 (2007).

    Article  CAS  Google Scholar 

  39. Harris, T. J. et al. Tissue-specific gene delivery via nanoparticle coating. Biomaterials 31, 998–1006 (2010).

    Article  CAS  Google Scholar 

  40. Kagawa, S. et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res. 61, 3330–3338 (2001).

    CAS  Google Scholar 

  41. Matsubara, H. et al. Gene therapy with TRAIL against renal cell carcinoma. Mol. Cancer Ther. 5, 2165–2171 (2006).

    Article  CAS  Google Scholar 

  42. Cantarella, G. et al. TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells. Br. J. Cancer 94, 1428–1435 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Graham in the EM Core Facility at the Yale School of Medicine for technical assistance and Nha Duong for editorial assistance. This work was supported by US National Institutes of Health (grant EB000487), Chicago Institute of Neurosurgery and Neuroresearch Foundation, the Voices Against Brain Cancer Foundation, and a pilot grant from the Yale Institute for Nanoscience and Quantum Engineering (YINQE).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., J.L., Z.J. and W.M.S. designed the experiments. J.Z., J.L., C.J.C., T.R.P., C.E.W. and Z.J. performed the experiments. All the authors were involved in the analyses and interpretation of data. J.Z., Z.J. and W.M.S. wrote the paper, with the help of the co-authors.

Corresponding authors

Correspondence to Zhaozhong Jiang or W. Mark Saltzman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Liu, J., Cheng, C. et al. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nature Mater 11, 82–90 (2012). https://doi.org/10.1038/nmat3187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3187

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research