Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses

Abstract

The magnetization direction of a metallic magnet has generally been controlled by a magnetic field or by spin-current injection into nanosized magnetic cells1,2. Both these methods use an electric current to control the magnetization direction; therefore, they are energy consuming. Magnetization control using an electric field3 is considered desirable because of its expected ultra-low power consumption and coherent behaviour. Previous experimental approaches towards achieving voltage control of magnetization switching have used single ferromagnetic layers with and without piezoelectric materials, ferromagnetic semiconductors, multiferroic materials, and their hybrid systems4,5,6,7,8,9,10,11,12,13,14,15. However, the coherent control of magnetization using voltage signals has not thus far been realized. Also, bistable magnetization switching (which is essential in information storage) possesses intrinsic difficulties because an electric field does not break time-reversal symmetry. Here, we demonstrate a coherent precessional magnetization switching using electric field pulses in nanoscale magnetic cells with a few atomic FeCo (001) epitaxial layers adjacent to a MgO barrier. Furthermore, we demonstrate the realization of bistable toggle switching using the coherent precessions. The estimated power consumption for single switching in the ideal equivalent switching circuit can be of the order of 104kBT, suggesting a reduction factor of 1/500 when compared with that of the spin-current-injection switching process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tunnelling magnetoresistance and voltage-induced anisotropy change in an ultrathin FeCo (001)/MgO (001)/Fe (001) junction.
Figure 2: Macro-spin model simulation of coherent magnetization switching under various pulse duration conditions.
Figure 3: Pulse-voltage-induced coherent magnetization switching.
Figure 4: Switching probability (Pswitch) diagram as functions of pulse duration time τpulse and external magnetic field.

Similar content being viewed by others

References

  1. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  2. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  3. Curie, P. Sur la symétrie dans les phénoménes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. 3, 393–415 (1894).

    Google Scholar 

  4. Nie, X. & Blügel, S. Elektrisches Feld zur Ummagnetisierung eines dünnen Films. European patent 19841034.4 (2000).

  5. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  6. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  7. Gamble, S. J. et al. Electric field induced magnetic anisotropy in a ferromagnet. Phys. Rev. Lett. 102, 217201 (2009).

    Article  CAS  Google Scholar 

  8. Gerhard, L. et al. Magnetoelectric coupling at metal surfaces. Nature Nanotech. 5, 792–797 (2010).

    Article  CAS  Google Scholar 

  9. Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000).

    Article  CAS  Google Scholar 

  10. Lee, J-W., Shin, S-C. & Kim, S-K. Spin engineering of CoPd alloy films via the inverse piezoelectric effect. Appl. Phys. Lett. 82, 2458–2460 (2003).

    Article  CAS  Google Scholar 

  11. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  12. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  CAS  Google Scholar 

  13. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    Article  CAS  Google Scholar 

  14. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  15. Chu, Y-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  16. Shiota, Y. et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2, 063001 (2009).

    Article  Google Scholar 

  17. Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

    Article  Google Scholar 

  18. Duan, C-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

    Article  Google Scholar 

  19. Nakamura, K. et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 102, 187201 (2009).

    Article  Google Scholar 

  20. Tsujikawa, M. & Oda, T. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): A first-principles study. Phys. Rev. Lett. 102, 247203 (2009).

    Article  Google Scholar 

  21. Nozaki, T., Shiota, Y., Shiraishi, M., Shinjo, T. & Suzuki, Y. Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96, 022506 (2010).

    Article  Google Scholar 

  22. Shiota, Y. et al. Quantitative evaluation of voltage-induced magnetic anisotropy change by magnetoresistance measurement. Appl. Phys. Express 4, 043005 (2011).

    Article  Google Scholar 

  23. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  CAS  Google Scholar 

  24. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  25. Chiba, D., Nakatani, Y., Matsukura, F. & Ohno, H. Simulation of magnetization switching by electric-field manipulation of magnetic anisotropy. Appl. Phys. Lett. 96, 192506 (2010).

    Article  Google Scholar 

  26. Akimoto, H., Kanai, H., Uehara, Y., Ishizuka, T. & Kameyama, S. Analysis of thermal magnetic noise in spin-valve GMR heads by using micromagnetic simulation. J. Appl. Phys. 97, 10N705 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Tomita for his help with the simulations as well as S. Miwa for useful discussions. Y. Shiota thanks the Japan Society for the Promotion of Science for the fellowship. Part of this research was conducted under the financial support of the Global Center of Excellence (G-COE) program of the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

Y. Suzuki conceived and designed the experiments. Y. Shiota performed the experiments, simulations, and analysis. T.N. and Y. Suzuki led experiments and physical discussions. F.B., S.M., and T.S. contributed to the general discussions. Y. Shiota wrote the paper with reviews and inputs from Y. Suzuki and T.N.

Corresponding author

Correspondence to Yoshishige Suzuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiota, Y., Nozaki, T., Bonell, F. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater 11, 39–43 (2012). https://doi.org/10.1038/nmat3172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing