Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning upconversion through energy migration in core–shell nanoparticles

Abstract

Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core–shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core–shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified energy level diagrams depicting reported and proposed anti-Stokes processes.
Figure 2: Tuning upconversion through energy migration in core–shell nanoparticles.
Figure 3: Mechanistic investigation of the EMU process in core–shell nanoparticles.
Figure 4: Effect of energy transfer between nanoparticles by means of energy migration.

Similar content being viewed by others

References

  1. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004).

    Article  CAS  Google Scholar 

  2. Downing, E., Hesselink, L., Ralston, J. & Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996).

    Article  CAS  Google Scholar 

  3. Cohen, B. E. Beyond fluorescence. Nature 467, 407–408 (2010).

    Article  CAS  Google Scholar 

  4. van der Ende, B. M., Aartsa, L. & Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009).

    Article  CAS  Google Scholar 

  5. Wang, G., Peng, Q. & Li, Y. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322–332 (2011).

    Article  Google Scholar 

  6. Kaiser, W. & Garrett, C. G. B. Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett. 7, 229–231 (1961).

    Article  CAS  Google Scholar 

  7. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    Article  CAS  Google Scholar 

  8. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article  Google Scholar 

  9. Pantazis, P., Maloney, J., Wu, D. & Fraser, S. E. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl Acad. Sci. USA 107, 14535–14540 (2010).

    Article  CAS  Google Scholar 

  10. Suyver, J. F. et al. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005).

    Article  CAS  Google Scholar 

  11. Wang, F. & Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009).

    Article  CAS  Google Scholar 

  12. Chatterjee, D. K., Gnanasammandhan, M. K. & Zhang, Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small 24, 2781–2795 (2010).

    Article  Google Scholar 

  13. Bünzli, J-C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010).

    Article  Google Scholar 

  14. Li, C. & Lin, J. Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application. J. Mater. Chem. 20, 6831–6847 (2010).

    Article  CAS  Google Scholar 

  15. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  16. Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    Article  CAS  Google Scholar 

  17. Mai, H. et al. High-quality sodium rare-earth fluoride nanoparticles: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).

    Article  CAS  Google Scholar 

  18. Feng, W., Sun, L. D. & Yan, C. H. Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chem. Commun. 4393–4395 (2009).

  19. Schäfer, H., Ptacek, P., Eickmeier, H. & Haase, M. Synthesis of hexagonal Yb3+,Er3+-doped NaYF4 nanocrystals at low temperature. Adv. Funct. Mater. 19, 3091–3097 (2009).

    Article  Google Scholar 

  20. Wang, M. et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano 3, 1580–1586 (2009).

    Article  CAS  Google Scholar 

  21. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    Article  CAS  Google Scholar 

  22. Zhang, F. et al. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 132, 2850–2851 (2010).

    Article  CAS  Google Scholar 

  23. Boyer, J-C., Carling, C-J., Gates, B. D. & Branda, N. R. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc. 132, 15766–15772 (2010).

    Article  CAS  Google Scholar 

  24. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  Google Scholar 

  25. Wang, F., Wang, J. & Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460 (2010).

    Article  CAS  Google Scholar 

  26. Liu, Y. et al. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 22, 3266–3271 (2010).

    Article  CAS  Google Scholar 

  27. Ye, X. et al. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl Acad. Sci. USA 107, 22430–22435 (2010).

    Article  CAS  Google Scholar 

  28. Abel, K. A., Boyer, J. C., Andrei, C. M. & van Veggel, F. C. J. M. Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanoparticles by EELS and EDS. J. Phys. Chem. Lett. 2, 185–189 (2011).

    Article  CAS  Google Scholar 

  29. Bogdan, N., Vetrone, F., Ozin, G. A. & Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11, 835–840 (2011).

    Article  CAS  Google Scholar 

  30. Chen, G., Ohulchanskyy, T. Y., Kumar, R., Agren, H. & Prasad, P. N. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4, 3163–3168 (2010).

    Article  CAS  Google Scholar 

  31. Mader, H. S., Kele, P., Saleh, S. M. & Wofbeis, O. S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 14, 582–596 (2010).

    Article  CAS  Google Scholar 

  32. DiMaio, J. R., Sabatier, C., Kokuoz, B. & Ballato, J. Controlling energy transfer between multiple dopants within a single nanoparticle. Proc. Natl Acad. Sci. USA 105, 1809–1813 (2008).

    Article  CAS  Google Scholar 

  33. Zhou, J. et al. Fluorine-18-labeled Gd3+/Yb3+/Er3+ codoped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32, 1148–1156 (2011).

    Article  CAS  Google Scholar 

  34. Liu, Q. et al. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5, 3146–3157 (2011).

    Article  CAS  Google Scholar 

  35. Schietinger, S., Aichele, T., Wang, H., Nann, T. & Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 10, 134–138 (2010).

    Article  CAS  Google Scholar 

  36. Chen, D. et al. Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J. Am. Chem. Soc. 132, 9976–9978 (2010).

    Article  CAS  Google Scholar 

  37. Yi, G. S. & Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324–2329 (2006).

    Article  CAS  Google Scholar 

  38. Zhang, H. et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010).

    Article  CAS  Google Scholar 

  39. Xue, X., Wang, F. & Liu, X. Emerging functional nanomaterials for therapeutics. J. Mater. Chem. 21, 13107–13127 (2011).

    Article  CAS  Google Scholar 

  40. Blasse, G. The physics of new luminescent materials. Mater. Chem. Phys. 16, 201–236 (1987).

    Article  CAS  Google Scholar 

  41. Chua, M. & Tanner, P. A. Energy transfer and migration in highly forbidden transitions of lanthanide ion doped crystals. Chem. Phys. 250, 267–278 (1999).

    Article  CAS  Google Scholar 

  42. Kutsenko, A. B., Heber, J., Kapphan, S. E., Demirbilek, R. & Zakharchenya, R. I. Energy migration and energy transfer processes in RE3+ doped nanocrystalline yttrium oxide. Phys. Status Solidi c 2, 685–688 (2005).

    Article  CAS  Google Scholar 

  43. Wegh, R. T., Donker, H., Oskam, K. D. & Meijerink, A. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).

    Article  CAS  Google Scholar 

  44. Qin, W. et al. Ultraviolet upconversion fluorescence from 6DJ of Gd3+ induced by 980 nm excitation. Opt. Lett. 33, 2167–2169 (2008).

    Article  CAS  Google Scholar 

  45. Tu, D. et al. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem. Int. Ed. 50, 6306–6310 (2011).

    Article  CAS  Google Scholar 

  46. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanoparticles as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  47. Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374 (2009).

    Article  CAS  Google Scholar 

  48. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotechnol. 21, 1387–1395 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The bulk of the work was supported by the Singapore Ministry of Education (No. MOE2010T2-1-083), the Singapore-MIT Alliance, and the Agency for Science, Technology and Research (No. IMRE/11-1C0110). Y.H. is grateful to KAUST Global Collaborative Research for the Academic Excellence Alliance (AEA) fund. H.Z. and X.C. acknowledge the financial support from the NSFC (Nos. 10974200 and 51002151) and the 863 programs of MOST (Nos. 2009AA03Z430 and 2011AA03A407). We thank T. Nguyen, Y. Liu and L. Tan for their help in sample characterization.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and X.L. conceived the experiments and wrote the paper. F.W., R.D. and J.W. were primarily responsible for the experiments. Q.W. and Y.H. performed the STEM, EDX and EELS characterizations. H.Z. and X.C. carried out the time-decay measurements. All authors contributed to the analysis of this manuscript.

Corresponding author

Correspondence to Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Deng, R., Wang, J. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nature Mater 10, 968–973 (2011). https://doi.org/10.1038/nmat3149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing