Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bifurcation-based acoustic switching and rectification

Abstract

Switches and rectification devices are fundamental componentsused for controlling the flow of energy in numerous applications. Thermal1,2,3,4 and acoustic5,6,7,8 rectifiers have been proposed for use in biomedical ultrasound applications6,7, thermal computers2,9, energy- saving and -harvesting materials5,6, and direction-dependent insulating materials1,2,3. In all these systems the transition between transmission states is smooth with increasing signal amplitudes. This limits their effectiveness as switching and logic devices, and reduces their sensitivity to external conditions as sensors. Here we overcome these limitations by demonstrating a new mechanism for tunable rectification that uses bifurcations and chaos. This mechanism has a sharp transition between states, which can lead to phononic switching and sensing. We present an experimental demonstration of this mechanism, applied in a mechanical energy rectifier operating at variable sonic frequencies. The rectifier is a granular crystal, composed of a statically compressed one-dimensional array of particles in contact, containing a light mass defect near a boundary. As a result of the defect, vibrations at selected frequencies cause bifurcations and a subsequent jump to quasiperiodic and chaotic states with broadband frequency content. We use this combination of frequency filtering and asymmetrically excited bifurcations to obtain rectification ratios greater than 104. We envisage this mechanism to enable the design of advanced photonic, thermal and acoustic materials and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics and conceptual diagrams.
Figure 2: Bifurcation and stability.
Figure 3: Experimental force–time response and power spectra.
Figure 4: Power transmission and energy distribution.

Similar content being viewed by others

References

  1. Li, B., Wang, L. & Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).

    Article  CAS  Google Scholar 

  2. Li, B. & Wang, L. Phononics gets hot. Phys. World 21, 27–29 (March, 2008).

    CAS  Google Scholar 

  3. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    Article  CAS  Google Scholar 

  4. Kobayashi, W., Teraoka, Y. & Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009).

    Article  CAS  Google Scholar 

  5. Nesterenko, V. F., Daraio, C., Herbold, E. B. & Jin, S. Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702 (2005).

    Article  CAS  Google Scholar 

  6. Liang, B., Yuan, B. & Cheng, J. C. Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009).

    Article  CAS  Google Scholar 

  7. Liang, B., Guo, X. S., Tu, J., Zhang, D. & Cheng, J. C. An acoustic rectifier. Nature Mater. 9, 989–992 (2010).

    Article  CAS  Google Scholar 

  8. Li, X. F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011).

    Article  CAS  Google Scholar 

  9. Wang, L. & Li, B. Thermal logic gates: Computation with phonons. Phys. Rev. Lett. 99, 177208 (2007).

    Article  CAS  Google Scholar 

  10. Markos, P. & Soukoulis, C. M. Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton Univ. Press, 2008).

    Book  Google Scholar 

  11. Brillouin, L. Wave Propagation in Periodic Structures (Dover, 1953).

    Google Scholar 

  12. Sigalas, M. et al. Classical vibrational modes in phononic lattices: Theory and experiment. Z. Kristallogr. 220, 765–809 (2005).

    CAS  Google Scholar 

  13. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  CAS  Google Scholar 

  14. Strogatz, S. H. Nonlinear Dynamics and Chaos (Perseus Publishing, 1994).

    Google Scholar 

  15. Maniadis, P., Kopidakis, G. & Aubry, S. Energy dissipation threshold and self-induced transparency in systems with discrete breathers. Physica D 216, 121–135 (2006).

    Article  Google Scholar 

  16. Karabalin, R. B. et al. Signal amplification by sensitive control of bifurcationtopology. Phys. Rev. Lett. 106, 094102 (2011).

    Article  CAS  Google Scholar 

  17. Vijay, R., Devoret, M. H. & Siddiqi, I. Invited review article: The Josephson bifurcation amplifier. Rev. Sci. Instrum. 80, 111101 (2009).

    Article  CAS  Google Scholar 

  18. Campbell, D. K., Flach, S. & Kivshar, Y. S. Localizing energy through nonlinearity and discreteness. Phys. Today 57, 43–49 (January, 2004).

    Article  CAS  Google Scholar 

  19. Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  CAS  Google Scholar 

  20. Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, 1985).

    Book  Google Scholar 

  21. Nesterenko, V. F. Dynamics of Heterogeneous Materials (Springer, 2001).

    Book  Google Scholar 

  22. Daraio, C., Nesterenko, V. F., Herbold, E. & Jin, S. Tunability of solitary wave properties in one dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73, 026610 (2006).

    Article  CAS  Google Scholar 

  23. Coste, C., Falcon, E. & Fauve, S. Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104–6117 (1997).

    Article  CAS  Google Scholar 

  24. Herbold, E. B., Kim, J., Nesterenko, V. F., Wang, S. Y. & Daraio, C. Tunable frequency band-gap and pulse propagation in a strongly nonlinear diatomic chain. Acta Mech. 205, 85–103 (2009).

    Article  Google Scholar 

  25. Hladky-Hennion, A. C. & de Billy, M. Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal. J. Acoust. Soc. Am. 122, 2594–2600 (2007).

    Article  Google Scholar 

  26. Boechler, N., Theocharis, G., Job, S., Kevrekidis, P. G., Porter, M. A. & Daraio, C. Discrete breathers in one-dimensional diatomic granular crystals. Phys. Rev. Lett. 104, 244302 (2010).

    Article  CAS  Google Scholar 

  27. Job, S., Santibanez, F., Tapia, F. & Melo, F. Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E 80, 025602 (2009).

    Article  CAS  Google Scholar 

  28. Boechler, N., Theocharis, G., Man, Y., Kevrekidis, P. G. & Daraio, C. Defect modes in one-dimensional granular crystals. Preprint at http://arxiv.org/abs/1103.2483 (2011).

  29. Spadoni, A. & Daraio, C. Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl Acad. Sci. USA 107, 7230–7234 (2010).

    Article  Google Scholar 

  30. Hong, J. Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 94, 108001 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. C. Cross, C. Hannemann, P. G. Kevrekidis, M. A. Porter, A. W. Richards and T. Schneider for useful discussions. We thank V. Gabuchian, M. Mello and S. Job for help in the experiments. We acknowledge support from the National Science Foundation grants number 844540 (CAREER), 969541 and 0520565 (MRSEC). C.D. acknowledges the Office of Naval Research (YIP), and G.T. the A.S. Onassis Public Benefit Foundation through Grant No. RZG 003/2010-2011.

Author information

Authors and Affiliations

Authors

Contributions

N.B. and G.T. developed the system concept. N.B. led the experimental work. G.T. led the theoretical and numerical analysis. C.D. provided guidance and contributed to the design and analysis throughout the project. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to C. Daraio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching and rectification. Nature Mater 10, 665–668 (2011). https://doi.org/10.1038/nmat3072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing