Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative prediction of solute strengthening in aluminium alloys

Abstract

Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute–dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al–X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solute–dislocation interaction energy U(xi,yj) versus solute position (xi,yj) for Mg, Cr, Si and Cu solutes.
Figure 2
Figure 3: Total energy per unit length ΔEtot/L versus roughening amplitude w for an Al alloy containing 5% Mg.

Similar content being viewed by others

References

  1. Fleischer, R. L. Substitutional solution hardening of copper. Acta Metall. 14, 1867–1868 (1966).

    Article  CAS  Google Scholar 

  2. Mott, N. F. & Nabarro, F. R. N. Dislocation theory and transient creep. Phys. Soc. Bristol Conf. 1–19 (1948).

  3. Kocks, U. F., Argon, A. S. & Ashby, M. F. Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–281 (1975).

    Article  Google Scholar 

  4. Haasen, P. Physical Metallurgy (Oxford Univ. Press, 1996).

    Book  Google Scholar 

  5. Labusch, R. A statistical theory of solid solution hardening. Phys. Status Solidi 41, 659–669 (1970).

    Article  Google Scholar 

  6. Argon, A. S. Strengthening Mechanisms in Crystal Plasticity (Oxford Univ. Press, 2004).

    Google Scholar 

  7. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  8. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  9. Rao, S., Hernandez, C., Simmons, J. P., Parthasarathy, T. A. & Woodward, C. Green’s function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations. Phil. Mag. A 77, 231–256 (1998).

    Article  CAS  Google Scholar 

  10. Labusch, R. Statistical theories of solid-solution hardening. Acta Metall. 20, 917–927 (1972).

    Article  Google Scholar 

  11. Zaiser, M. Dislocation motion in a random solid solution. Phil. Mag. A 82, 2869–2883 (2002).

    Article  CAS  Google Scholar 

  12. Olmsted, D. L., Hector, L. G. Jr & Curtin, W. A. Molecular dynamics study of solute strengthening in Al/Mg alloys. J. Mech. Phys. Solids 54, 1763–1788 (2006).

    Article  CAS  Google Scholar 

  13. Basinski, Z. S., Foxall, R. A. & Pascual, R. Stress equivalence of solution hardening. Scr. Metall. 6, 807–814 (1972).

    Article  CAS  Google Scholar 

  14. Diak, B. J. & Saimoto, S. The determination of solute clusters in dilute aluminium alloys using strain rate sensitivity. Mater. Sci. Eng. A 234, 1019–1022 (1997).

    Article  Google Scholar 

  15. Diak, B. J., Upadhyaya, K. R. & Saimoto, S. Characterization of thermodynamic response by materials testing. Prog. Mater. Sci. 43, 223–363 (1998).

    Article  CAS  Google Scholar 

  16. Woodward, C., Trinkle, D. R., Hector, L. G. Jr & Olmsted, D. L. Prediction of dislocation cores in aluminum from density functional theory. Phys. Rev. Lett. 100, 045507 (2008).

    Article  CAS  Google Scholar 

  17. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  18. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  19. Perdew, J. P. & Wang, Y. Pair-distribution fuction and its coupling-constant average for the spin-polarized electron-gas. Phys. Rev. B 46, 12947–12954 (1992).

    Article  CAS  Google Scholar 

  20. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  21. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  22. Vannarat, S., Sluiter, M. H. F. & Kawazoe, Y. First-principles study of solute–dislocation interaction in aluminum-rich alloys. Phys. Rev. B 64, 224203 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work was provided through the GM/Brown Collaborative Research Lab on Computational Materials Research, with further support through the NSF Materials Research Science and Engineering Center at Brown on Micro- and Nano-Mechanics of Materials (grant DMR-0520651).

Author information

Authors and Affiliations

Authors

Contributions

W.A.C., L.G.H.Jr and C.F.W. designed the research plan; G.P.M.L., L.G.H.Jr and C.F.W. carried out various aspects of the quantum energy calculations; G.P.M.L. and W.A.C. developed the analytic strengthening model; G.P.M.L., W.A.C. and L.G.H.Jr wrote the paper.

Corresponding author

Correspondence to William A. Curtin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyson, G., Curtin, W., Hector, L. et al. Quantitative prediction of solute strengthening in aluminium alloys. Nature Mater 9, 750–755 (2010). https://doi.org/10.1038/nmat2813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing