Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization

Abstract

Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats coding for glutamine in the HD gene product huntingtin1. Although HD symptoms reflect preferential neuronal death in specific brain regions, huntingtin is expressed in almost all tissues2, so abnormalities outside the brain might be expected. Although involvement of nuclei3,4,5,6,7 and mitochondria8,9,10,11,12,13,14 in HD pathophysiology has been suggested, specific intracellular defects that might elicit cell death have been unclear. Mitochondria dysfunction is reported in HD brains10,11,12,13; mitochondria are organelles that regulates apoptotic cell death15,16. We now report that lymphoblasts derived from HD patients showed increased stress-induced apoptotic cell death associated with caspase-3 activation. When subjected to stress, HD lymphoblasts also manifested a considerable increase in mitochondrial depolarization correlated with increased glutamine repeats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cyanide-induced mitochondrial depolarization is greater in HD than in control cells.
Figure 2: HD lymphoblasts have more apoptotic vulnerability than do control lymphoblasts after the addition of 20 nM staurosporine.
Figure 3: Selective activation of a set of caspases in HD lymphoblasts.

Similar content being viewed by others

References

  1. MacDonald, M.E. & Gusella, J.F. Huntington's disease: translating a CAG repeat into a pathogenic mechanism. Curr. Opin. Neurobiol. 6, 638–43 (1996).

    Article  CAS  Google Scholar 

  2. Li, S.H. et al. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11, 985– 993 (1993).

    Article  CAS  Google Scholar 

  3. Klement, I.A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  Google Scholar 

  4. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  5. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 ( 1997).

    Article  CAS  Google Scholar 

  6. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  7. Becher, M.W. et al. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis. 4, 387–397 ( 1998).

    Article  CAS  Google Scholar 

  8. Schapira, A. H. Mitochondrial function in Huntington's disease: clues for pathogenesis and prospects for treatment. Ann. Neurol. 41, 141–142 (1997).

    Article  CAS  Google Scholar 

  9. Beal, M.F. et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181– 4192 (1993).

    Article  CAS  Google Scholar 

  10. Gu, M. et al. Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol. 39, 385–389 (1996).

    Article  CAS  Google Scholar 

  11. Koroshetz, W.J., Jenkins, B.G., Rosen, B.R. & Beal, M.F. Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann. Neurol. 41, 160– 165 (1997).

    Article  CAS  Google Scholar 

  12. Browne, S.E. et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653 ( 1997).

    Article  CAS  Google Scholar 

  13. Tabrizi, S.J. et al. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 45, 25– 32 (1999).

    Article  CAS  Google Scholar 

  14. Arenas, J. et al. Complex I defect in muscle from patients with Huntington's disease. Ann. Neurol. 43, 397– 400 (1998).

    Article  CAS  Google Scholar 

  15. Green, D.R. & Reed, J.C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).

    Article  CAS  Google Scholar 

  16. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619 –642 (1998).

    Article  CAS  Google Scholar 

  17. Zamzami, N. et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661–1672 ( 1995).

    Article  CAS  Google Scholar 

  18. Ankarcrona, M. et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973 (1995).

    Article  CAS  Google Scholar 

  19. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type1 individuals. Nature Genet. 10, 94–98 ( 1995).

    Article  CAS  Google Scholar 

  20. Marchetti, P. et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med. 184, 1155 –1160 (1996).

    Article  CAS  Google Scholar 

  21. Nicolli, A., Basso, E., Petronilli, V., Wenger, R.M. & Bernardi, P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J. Biol. Chem. 271, 2185–2192 (1996).

    Article  CAS  Google Scholar 

  22. Snyder, S.H. & Sabatini, D.M. Immunophilins and the nervous system. Nature Med. 1, 32– 37 (1995).

    Article  CAS  Google Scholar 

  23. Anholt, R.R., Pedersen, P.L., De Souza, E.B. & Snyder, S.H. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J. Biol. Chem. 261, 576– 583 (1986).

    CAS  PubMed  Google Scholar 

  24. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129– 1132 (1997).

    Article  CAS  Google Scholar 

  25. Jacobsen, M.D., Weil, M. & Raff, M.C. Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. J. Cell Biol. 133, 1041–1051 (1996).

    Article  CAS  Google Scholar 

  26. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 7, 325– 337 (1998).

    Article  Google Scholar 

  27. Sanchez, I. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623– 633 (1999).

    Article  CAS  Google Scholar 

  28. Ona, V.O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntignton's disease. Nature 399, 263–267 (1999).

    Article  CAS  Google Scholar 

  29. Hackam, A.S., Singaraja, R., Zhang, T., Gan, L., & Hayden, M.R. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Hum. Mol. Genet. 8, 25–33 ( 1999).

    Article  CAS  Google Scholar 

  30. Gutekunst, C.A. et al. Nuclear and neuropil aggregates in Hunitington's disease: relationship to neuropathology. J. Neurosci. 19 2522–2534 (1999).

    Article  CAS  Google Scholar 

  31. Penno, M.B., Pedrotti-Krueger, M. & Ray, T. Cryopreservation of whole blood and isolated lymphocytes for B-call immortalization. J. Tiss. Cult. Meth. 15 , 43–48 (1993).

    Article  Google Scholar 

  32. Sawa, A., Oyama, F., Cairns, N.J., Amano, N. & Matsushita, M. Aberrant expression of bcl-2 gene family in Down's syndrome brains. Brain Res. Mol. Brain Res 48, 53 –59 (1997).

    Article  CAS  Google Scholar 

  33. Sawa, A., Khan, A.A., Hester, L.D. & Snyder, S.H. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl. Acad. Sci. USA 94, 11669–11674 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.Y. Zoghbi for providing SCA-1 lymphoblasts, and M. McInnis for providing control lymphoblasts. We thank S. Gartner for providing her facility. We thank C. Callahan, L. Hanle, X. Luo, A. McCall, M. Delanoy for their technical assistance. We thank J. Ha, G. Thinakaran and C.D. Ferris for discussions. We thank all the members of S.H.S. and C.A.R. labs for scientific support. We also thank D. Dodson, A. Kodaira, I. Yamamoto for typing and statistical analysis. This paper was supported by USPHS grant MH-18501 and Research Scientist Award DA-00074 to S.H.S.; NS16375 from NIH and HDSA "Coalition for the Cure" to C.A.R.; and a research grant from the Brain Science Foundation (Japan) to A.S.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawa, A., Wiegand, G., Cooper, J. et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med 5, 1194–1198 (1999). https://doi.org/10.1038/13518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing