Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes

Abstract

Multiphoton excitation fluorescence microscopy (MPM) can image certain molecular processes in vivo. In the eye, fluorescent retinyl esters in subcellular structures called retinosomes mediate regeneration of the visual chromophore, 11-cis-retinal, by the visual cycle. But harmful fluorescent condensation products of retinoids also occur in the retina. We report that in wild-type mice, excitation with a wavelength of 730 nm identified retinosomes in the retinal pigment epithelium, and excitation with a wavelength of 910 nm revealed at least one additional retinal fluorophore. The latter fluorescence was absent in eyes of genetically modified mice lacking a functional visual cycle, but accentuated in eyes of older wild-type mice and mice with defective clearance of all-trans-retinal, an intermediate in the visual cycle. MPM, a noninvasive imaging modality that facilitates concurrent monitoring of retinosomes along with potentially harmful products in aging eyes, has the potential to detect early molecular changes due to age-related macular degeneration and other defects in retinoid metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiphoton excitation of a 6-month-old WT mouse eye at 730 and 910 nm produced emission spectra indicating more than one fluorophore.
Figure 2: Multiphoton excitation of the RPE in an intact 6-month-old WT mouse eye at different wavelengths of excitation light.
Figure 3: Visualization of retinosomes by three-photon excitation spectroscopy in the intact 7-week-old Rpe65−/− mouse eye.
Figure 4: Two-photon excitation of 3-month-old Abca4−/−;Rdh8−/− (DKO) intact mouse eye.
Figure 5: Age-dependent changes in fluorophore accumulation in mouse eyes.

Similar content being viewed by others

References

  1. Schenke-Layland, K., Riemann, I., Damour, O., Stock, U.A. & Konig, K. Two-photon microscopes and in vivo multiphoton tomographs—powerful diagnostic tools for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 58, 878–896 (2006).

    Article  CAS  Google Scholar 

  2. Zhang, E.Z., Laufer, J.G., Pedley, R.B. & Beard, P.C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54, 1035–1046 (2009).

    Article  CAS  Google Scholar 

  3. Kim, J.S. et al. Imaging of transient structures using nanosecond in situ TEM. Science 321, 1472–1475 (2008).

    Article  CAS  Google Scholar 

  4. Shoham, D. et al. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24, 791–802 (1999).

    Article  CAS  Google Scholar 

  5. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  6. DaCosta, R.S., Wilson, B.C. & Marcon, N.E. Optical techniques for the endoscopic detection of dysplastic colonic lesions. Curr. Opin. Gastroenterol. 21, 70–79 (2005).

    PubMed  Google Scholar 

  7. Evgenov, N.V., Medarova, Z., Dai, G., Bonner-Weir, S. & Moore, A. In vivo imaging of islet transplantation. Nat. Med. 12, 144–148 (2006).

    Article  CAS  Google Scholar 

  8. Piston, D.W. Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol. 9, 66–69 (1999).

    Article  CAS  Google Scholar 

  9. Imanishi, Y., Lodowski, K.H. & Koutalos, Y. Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry 46, 9674–9684 (2007).

    Article  CAS  Google Scholar 

  10. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  11. Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).

    Article  CAS  Google Scholar 

  12. Imanishi, Y., Sun, W., Maeda, T., Maeda, A. & Palczewski, K. Retinyl ester homeostasis in the adipose differentiation-related protein–deficient retina. J. Biol. Chem. 283, 25091–25102 (2008).

    Article  CAS  Google Scholar 

  13. Imanishi, Y., Batten, M.L., Piston, D.W., Baehr, W. & Palczewski, K. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J. Cell Biol. 164, 373–383 (2004).

    Article  CAS  Google Scholar 

  14. Imanishi, Y., Gerke, V. & Palczewski, K. Retinosomes: new insights into intracellular managing of hydrophobic substances in lipid bodies. J. Cell Biol. 166, 447–453 (2004).

    Article  CAS  Google Scholar 

  15. von Lintig, J., Kiser, P.D., Golczak, M. & Palczewski, K. The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. Trends Biochem. Sci. 35, 400–410 (2010).

    Article  CAS  Google Scholar 

  16. Sparrow, J.R., Wu, Y., Kim, C.Y. & Zhou, J. Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J. Lipid Res. 51, 247–261 (2010).

    Article  CAS  Google Scholar 

  17. Maeda, A., Maeda, T., Golczak, M. & Palczewski, K. Retinopathy in mice induced by disrupted all-trans-retinal clearance. J. Biol. Chem. 283, 26684–26693 (2008).

    Article  CAS  Google Scholar 

  18. Maeda, A. et al. Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J. Biol. Chem. 284, 15173–15183 (2009).

    Article  CAS  Google Scholar 

  19. Zhou, J., Jang, Y.P., Kim, S.R. & Sparrow, J.R. Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc. Natl. Acad. Sci. USA 103, 16182–16187 (2006).

    Article  CAS  Google Scholar 

  20. Zhou, J., Kim, S.R., Westlund, B.S. & Sparrow, J.R. Complement activation by bisretinoid constituents of RPE lipofuscin. Invest. Ophthalmol. Vis. Sci. 50, 1392–1399 (2009).

    Article  Google Scholar 

  21. Sparrow, J.R. et al. Involvement of oxidative mechanisms in blue-light–induced damage to A2E-laden RPE. Invest. Ophthalmol. Vis. Sci. 43, 1222–1227 (2002).

    PubMed  Google Scholar 

  22. Katz, M.L. & Redmond, T.M. Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 42, 3023–3030 (2001).

    CAS  PubMed  Google Scholar 

  23. Van Hooser, J.P. et al. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc. Natl. Acad. Sci. USA 97, 8623–8628 (2000).

    Article  CAS  Google Scholar 

  24. Van Hooser, J.P. et al. Recovery of visual functions in a mouse model of Leber congenital amaurosis. J. Biol. Chem. 277, 19173–19182 (2002).

    Article  CAS  Google Scholar 

  25. Drabent, R., Bryl, K. & Olszewska, T. A water environment forces retinyl palmitate to create self-organized structures in binary solvents. J. Fluoresc. 7, 347–355 (1997).

    Article  CAS  Google Scholar 

  26. Maeda, A., Golczak, M., Maeda, T. & Palczewski, K. Limited roles of Rdh8, Rdh12, and Abca4 in all-trans-retinal clearance in mouse retina. Invest. Ophthalmol. Vis. Sci. 50, 5435–5443 (2009).

    Article  Google Scholar 

  27. Maeda, T., Maeda, A., Leahy, P., Saperstein, D.A. & Palczewski, K. Effects of long-term administration of 9-cis-retinyl acetate on visual function in mice. Invest. Ophthalmol. Vis. Sci. 50, 322–333 (2009).

    Article  Google Scholar 

  28. Sparrow, J.R., Parish, C.A., Hashimoto, M. & Nakanishi, K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest. Ophthalmol. Vis. Sci. 40, 2988–2995 (1999).

    CAS  PubMed  Google Scholar 

  29. Kevany, B.M. & Palczewski, K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25, 8–15 (2010).

    CAS  Google Scholar 

  30. Holz, F.G. et al. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am. J. Ophthalmol. 143, 463–472 (2007).

    Article  Google Scholar 

  31. Wielgus, A.R., Chignell, C.F., Ceger, P. & Roberts, J.E. Comparison of A2E cytotoxicity and phototoxicity with all-trans-retinal in human retinal pigment epithelial cells. Photochem. Photobiol. 86, 781–791 (2010).

    Article  CAS  Google Scholar 

  32. So, P.T., Dong, C.Y., Masters, B.R. & Berland, K.M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000).

    Article  CAS  Google Scholar 

  33. Zipfel, W.R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

    Article  CAS  Google Scholar 

  34. Xu, C. & Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).

    Article  CAS  Google Scholar 

  35. Maeda, A. et al. Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo. J. Biol. Chem. 280, 18822–18832 (2005).

    Article  CAS  Google Scholar 

  36. Batten, M.L. et al. Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J. Biol. Chem. 279, 10422–10432 (2004).

    Article  CAS  Google Scholar 

  37. Redmond, T.M. et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20, 344–351 (1998).

    Article  CAS  Google Scholar 

  38. Batten, M.L. et al. Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis. PLoS Med. 2, e333 (2005).

    Article  Google Scholar 

  39. Imanishi, Y. & Palczewski, K. Visualization of retinoid storage and trafficking by two-photon microscopy. Methods Mol. Biol. 652, 247–261 (2010).

    Article  CAS  Google Scholar 

  40. Maiti, S., Shear, J.B., Williams, R.M., Zipfel, W.R. & Webb, W.W. Measuring serotonin distribution in live cells with three-photon excitation. Science 275, 530–532 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Golczak for help during the course of this study and Z. Dong for expert handling of mice. We also thank L.T. Webster and members of Palczewski laboratory for critical comments on the manuscript. Rpe65−/– mice were a kind gift from M. Redmond (US National Eye Institute). This research was supported in part by grants EY008061, EY009339, EY019880, EY019031, EY020715 and P30 EY11373 from the US National Institutes of Health, TECH 09-004 from the State of Ohio Department of Development and Third Frontier Commission, the European Life Scientist Organization and the Klaus Tschira Foundation.

Author information

Authors and Affiliations

Authors

Contributions

G.P. and K.P. conceived of and directed the project. G.P., T.M., Y.I., W.S., Y.C. and A.M. designed and conducted experiments. G.P. and K.P. prepared the manuscript. Y.I., D.W.P. analyzed the data and edited the manuscript. D.R.W. edited the manuscript.

Corresponding authors

Correspondence to Grazyna Palczewska or Krzysztof Palczewski.

Ethics declarations

Competing interests

G.P. and W.S. are employees of Polgenix. K.P. is chief scientific officer at Polgenix. K.P. and Y.M. are inventors of the US Patent No. 7,706,863, “Methods for assessing a physiological state of a mammalian retina,” whose value may be affected by this publication. The laboratory of D.R.W. received support from Polgenix.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1083 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palczewska, G., Maeda, T., Imanishi, Y. et al. Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes. Nat Med 16, 1444–1449 (2010). https://doi.org/10.1038/nm.2260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing