Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NKT cells derive from double-positive thymocytes that are positively selected by CD1d

Abstract

CD1d-reactive NKT cells are a separate T cell sublineage. Instructive models propose that NKT cells branch off the mainstream developmental pathway because of their T cell antigen receptor specificity, whereas stochastic models would propose that they develop from precursor cells committed to this sublineage before variable-gene rearrangement. We show here that immature double-positive (DP) thymocytes form the canonical rearranged Vα gene of NKT cells at nearly equivalent frequencies in the presence or absence of CD1d expression. After interacting with CD1d in the thymus, these cells give rise to expanded populations of NKT cells—including both CD4+ and double-negative lymphocytes in the thymus and periphery—that express this α chain. These results confirm the existence of a DP intermediate for CD1d-reactive NKT cells. They also show that the early developmental stages of these T cells are not governed by a distinct mechanism, which is consistent with the TCR-instructive model of differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance of α-GalCer–CD1d tetramer+ cells in the thymi of C57BL/6 mice as a function of age.
Figure 2: Coreceptor expression by tetramer+ thymocytes.
Figure 3: Phenotype and proliferation of tetramer+ thymocytes during ontogeny.
Figure 4: Quantification of Vα14-Jα18 transcripts in thymocyte populations.
Figure 5: Fragment length analysis of the Vα14 rearrangements found in the different thymocyte populations of CD1d−/− and C57BL/6 mice.
Figure 6: DP TCRβ thymocytes from C57BL/6 mice contain NKT cell precursors.
Figure 7: DP TCRβ thymocytes from CD1d−/− mice contain NK T cell precursors.

Similar content being viewed by others

References

  1. MacDonald, H. R. NK1.1+ T cell receptor-α/β+ cells: new clues to their origin, specificity, and function. J. Exp. Med. 182, 633–638 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Eberl, G. et al. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 162, 6410–6419 (1999).

    CAS  PubMed  Google Scholar 

  5. Hammond, K. J. et al. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29, 3768–3781 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Arase, H., Arase, N., Ogasawara, K., Good, R. A. & Onoe, K. An NK1.1+ CD4+8 single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor Vβ family. Proc. Natl Acad. Sci. USA 89, 6506–6510 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Makino, Y., Kanno, R., Ito, T., Higashino, K. & Taniguchi, M. Predominant expression of invariant Vα14+ TCRα chain in NK1.1+ T cell populations. Int. Immunol. 7, 1157–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Ohteki, T. & MacDonald, H. R. Stringent Vβ requirement for the development of NK1.1+ T cell receptor-α/β+ cells in mouse liver. J. Exp. Med. 183, 1277–1282 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H. R. Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol. 27, 1576–1579 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 (1998).

    CAS  PubMed  Google Scholar 

  13. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med. 182, 993–1004 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Behar, S. M., Podrebarac, T. A., Roy, C. J., Wang, C. R. & Brenner, M. B. Diverse TCRs recognize murine CD1. J. Immunol. 162, 161–167 (1999).

    CAS  PubMed  Google Scholar 

  17. Park, S.-H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bix, M., Coles, M. & Raulet, D. Positive selection of Vβ8+ CD48 thymocytes by class I molecules expressed by hematopoietic cells. J. Exp. Med. 178, 901–908 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Coles, M. C. & Raulet, D. H. Class I dependence of the development of CD4+ CD8 NK1.1+ thymocytes. J. Exp. Med. 180, 395–399 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180, 699–704 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Coles, M. C. & Raulet, D. H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Eberl, G., Lowin-Kropf, B. & MacDonald, H. R. Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J. Immunol. 163, 4091–4094 (1999).

    CAS  PubMed  Google Scholar 

  25. Gadue, P., Morton, N. & Stein, P. L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190, 1189–1196 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol. 164, 2857–2860 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Ohteki, T., Ho, S., Suzuki, H., Mak, T. W. & Ohashi, P. S. Role for IL-15/IL-15 receptor β-chain in natural killer 1.1+ T cell receptor-αβ+ cell development. J. Immunol. 159, 5931–5935 (1997).

    CAS  PubMed  Google Scholar 

  28. Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl Acad. Sci. USA 96, 6336–6340 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elewaut, D. et al. Membrane lymphotoxin is required for the development of different subpopulations of NK T cells. J. Immunol. 165, 671–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Dudley, E. C., Petrie, H. T., Shah, L. M., Owen, M. J. & Hayday, A. C. T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. MacDonald, H. R. CD1d-Glycolipid tetramers: A new tool to monitor natural killer T cells in health and disease. J. Exp. Med. 192, 15–19 (2000).

    Article  Google Scholar 

  34. MacDonald, H. R., Lees, R. K. & Held, W. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J. Exp. Med. 187, 2109–2114 (1998).

    Article  CAS  Google Scholar 

  35. Page, D. M., Kane, L. P., Allison, J. P. & Hedrick, S. M. Two signals are required for negative selection of CD4+CD8+ thymocytes. J. Immunol. 151, 1868–1880 (1993).

    CAS  PubMed  Google Scholar 

  36. Hogquist, K. A. et al. Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Sant'Angelo, D. B. et al. A molecular map of T cell development. Immunity 9, 179–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R. N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Hogquist, K. A. Assays of thymic selection. Fetal thymus organ culture and in vitro thymocyte dulling assay. Meth. Mol. Biol. 156, 219–232 (2001).

    CAS  Google Scholar 

  40. McGargill, M. A., Derbinski, J. M. & Hogquist, K. A. Receptor editing in developing T cells. Nature Immunol. 1, 336–341 (2000).

    Article  CAS  Google Scholar 

  41. Swat, W., Dessing, M., Baron, A., Kisielow, P. & von Boehmer, H. Phenotypic changes accompanying positive selection of CD4+CD8+ thymocytes. Eur. J. Immunol. 22, 2367–2372 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Apostolou, I. et al. Murine natural killer T (NKT) cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl Acad. Sci. USA 96, 5141–5146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Makino, Y. et al. Extrathymic development of Vα14+ T cells. J. Exp. Med. 177, 1399–1408 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Sato, K. et al. Evidence for extrathymic generation of intermediate T cell receptor cells in the liver revealed in thymectomized, irradiated mice subjected to bone marrow transplantation. J. Exp. Med. 182, 759–767 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Makino, Y., Kanno, R., Koseki, H. & Taniguchi, M. Development of Vα14+ NK T cells in the early stages of embryogenesis. Proc. Natl Acad. Sci. USA 93, 6516–6520 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimizu, T. et al. The majority of lymphocytes in the bone marrow, thymus and extrathymic T cells in the liver are generated in situ from their own preexisting precursors. Microbiol. Immunol. 43, 595–608 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Shimamura, M., Ohteki, T., Launois, P., Garcia, A. M. & MacDonald, H. R. Thymus-independent generation of NK1+ T cells in vitro from fetal liver precursors. J. Immunol. 158, 3682–3689 (1997).

    CAS  PubMed  Google Scholar 

  48. Tilloy, F., Di Santo, J. P., Bendelac, A. & Lantz, O. Thymic dependence of invariant Vα14+ natural killer-T cell development. Eur. J. Immunol. 29, 3313–3318 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Shores, E. W., Sharrow, S. O. & Singer, A. Presence of CD4 and CD8 determinants on CD4CD8 murine thymocytes: passive acquisition of CD8 accessory molecules. Eur. J. Immunol. 21, 973–977 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Michie, A. M., Carlyle, J. R. & Zuniga-Pflucker, J. C. Early intrathymic precursor cells acquire a CD4low phenotype. J. Immunol. 160, 1735–1741 (1998).

    CAS  PubMed  Google Scholar 

  51. Asarnow, D. M., Cado, D. & Raulet, D. H. Selection is not required to produce invariant T-cell receptor γ-gene junctional sequences. Nature 362, 158–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Baldwin, K. K., Trenchak, B. P., Altman, J. D. & Davis, M. M. Negative selection of T cells occurs throughout thymic development. J. Immunol. 163, 689–698 (1999).

    CAS  PubMed  Google Scholar 

  53. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Takahama, Y., Kosugi, A. & Singer, A. Phenotype, ontogeny, and repertoire of CD4CD8 T cell receptor αβ+ thymocytes. Variable influence of self-antigens on T cell receptor Vβ usage. J. Immunol. 146, 1134–1141 (1991).

    CAS  PubMed  Google Scholar 

  55. Wu, L., Pearse, M., Egerton, M., Petrie, H. & Scollay, R. CD4CD8 thymocytes that express the T cell receptor may have previously expressed CD8. Int. Immunol. 2, 51–56 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Bendelac, A., Hunziker, R. D. & Lantz, O. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med. 184, 1285–1293 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Bruno, L., Fehling, H. J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Terrence, K., Pavlovich, C. P., Matechak, E. O. & Fowlkes, B. J. Premature expression of T cell receptor (TCR)αβ supresses TCRγδ gene rearrangement but permits development of γδ lineage T cells. J. Exp. Med. 192, 537–548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Curnow, S. J., Boyer, C., Buferne, M. & Schmitt-Verhulst, A. M. TCR-associated ζ-FcɛRIγ heterodimers on CD4CD8 NK1.1+ T cells selected by specific class I MHC antigen. Immunity 3, 427–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Schulz, R. J., Parkes, A., Mizoguchi, E., Bhan, A. K. & Koyasu, S. Development of CD4CD8 αβTCR+NK1.1+ T lymphocytes: thymic selection by self antigen. J. Immunol. 157, 4379–4389 (1996).

    CAS  PubMed  Google Scholar 

  61. Iwabuchi, C. et al. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad. Proc. Natl Acad. Sci. USA 95, 8199–8204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Legendre, V. et al. Selection of phenotypically distinct NK1.1+ T cells upon antigen expression in the thymus or in the liver. Eur. J. Immunol. 29, 2330–2343 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Sato, H. et al. Induction of differentiation of pre-NKT cells to mature Vα14 NKT cells by granulocyte/macrophage colony-stimulating factor. Proc. Natl Acad. Sci. USA 96, 7439–7444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iwabuchi, K. et al. Defective development of NK1.1+ T-cell antigen receptor αβ+ cells in zeta-associated protein 70 null mice with an accumulation of NK1.1+ CD3 NK-like cells in the thymus. Blood 97, 1765–1775 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Lantz, O., Sharara, L. I., Tilloy, F., Andersson, A. & DiSanto, J. P. Lineage relationships and differentiation of natural killer (NK) T cells: intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules. J. Exp. Med. 185, 1395–1401 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Amsen, D. & Kruisbeek, A. M. Thymocyte selection: not by TCR alone. Immunol. Rev. 165, 209–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Bendelac, A., Matzinger, P., Seder, R. A., Paul, W. E. & Schwartz, R. H. Activation events during thymic selection. J. Exp. Med. 175, 731–742 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Arase, H., Arase, N., Nakagawa, K., Good, R. A. & Onoe, K. NK1.1+ CD4+ CD8 thymocytes with specific lymphokine secretion. Eur. J. Immunol. 23, 307–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Leite-de-Moraes, M. C. et al. MHC class I-selected CD4CD8TCR-αβ+ T cells are a potential source of IL-4 during primary immune response. J. Immunol. 155, 4544–4550 (1995).

    CAS  PubMed  Google Scholar 

  70. Chen, Y. H., Chiu, N. M., Mandal, M., Wang, N. & Wang, C. R. Impaired NK1+ T cell development and early IL-4 production in CD1- deficient mice. Immunity 6, 459–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Lena (FACS facility at LIAI) and A. Saluk (FACS facility at TSRI) for help with cell sorting; K.Warren for help with spectratyping; O. Naidenko and S. Sidobre for providing the α-GalCer–CD1d tetramer; and S. Hedrick, F. Koning and A. Attinger for critical review of the manuscript. Supported by grants from the National Institutes of Health (RO1 CA52511), the Human Frontiers of Science Organization (to M. K.) and the Cancer Research Institute (to L. G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Kronenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gapin, L., Matsuda, J., Surh, C. et al. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2, 971–978 (2001). https://doi.org/10.1038/ni710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing