Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

P-selectin primes leukocyte integrin activation during inflammation

An Erratum to this article was published on 18 February 2014

This article has been updated

Abstract

Selectins mediate leukocyte rolling and prime leukocytes for integrin-mediated leukocyte adhesion. However, neither the in vivo importance of nor the signaling pathway by which selectin-mediated integrin activation occurs has been determined. We report here that P-selectin-deficient mice manifested impaired leukocyte adhesion, which was 'rescued' by soluble P-selectin. Mechanistically, the cytoplasmic domain of P-selectin glycoprotein ligand 1 formed a constitutive complex with Nef-associated factor 1. After binding of P-selectin, Src kinases phosphorylated Nef-associated factor 1, which recruited the phosphoinositide-3-OH kinase p85-p110δ heterodimer and resulted in activation of leukocyte integrins. Inhibition of this signal-transduction pathway diminished the adhesion of leukocytes to capillary venules and suppressed peritoneal infiltration of leukocytes. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by P-selectin glycoprotein ligand 1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Soluble P-selectin restores the adhesion-dependent infiltration of leukocytes in P-selectin-deficient mice.
Figure 2: Binding of the PSGL-1 cytoplasmic tail to Naf1.
Figure 3: Naf1 acts as an adaptor protein linking p85 to PSGL-1.
Figure 4: Obligatory requirement for Naf1 in P-selectin-induced integrin activation.
Figure 5: Requirement for the PSGL-1–Naf1 complex in P-selectin-induced integrin activation.
Figure 6: Essential function of the PI(3)K p85-p110δ heterodimer in P-selectin-induced activation of integrin.

Similar content being viewed by others

Change history

  • 13 November 2013

    In the version of this article initially published, in Figure 4b the row labeled 'IB: α-PSGL-1 monomer' is incorrect; it is a duplicate of the row above. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  2. Furie, B. & Furie, B.C. The molecular basis of platelet and endothelial cell interaction with neutrophils and monocytes: role of P-selectin and the P-selectin ligand, PSGL-1. Thromb. Haemost. 74, 224–227 (1995).

    CAS  PubMed  Google Scholar 

  3. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  4. Laudanna, C., Kim, J.Y., Constantin, G. & Butcher, E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002).

    Article  CAS  Google Scholar 

  5. McEver, R.P. Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002).

    Article  CAS  Google Scholar 

  6. Wagner, D.D. New links between inflammation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 25, 1321–1324 (2005).

    Article  CAS  Google Scholar 

  7. Mayadas, T.N., Johnson, R.C., Rayburn, H., Hynes, R.O. & Wagner, D.D. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74, 541–554 (1993).

    Article  CAS  Google Scholar 

  8. Yang, J. et al. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J. Exp. Med. 190, 1769–1782 (1999).

    Article  CAS  Google Scholar 

  9. Plow, E.F., Haas, T.A., Zhang, L., Loftus, J. & Smith, J.W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    Article  CAS  Google Scholar 

  10. Bunting, M., Harris, E.S., McIntyre, T.M., Prescott, S.M. & Zimmerman, G.A. Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving β2 integrins and selectin ligands. Curr. Opin. Hematol. 9, 30–35 (2002).

    Article  Google Scholar 

  11. Kim, M., Carman, C.V., Yang, W., Salas, A. & Springer, T.A. The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2 . J. Cell Biol. 167, 1241–1253 (2004).

    Article  CAS  Google Scholar 

  12. Reedquist, K.A., Ludikhuize, J. & Tak, P.P. Phosphoinositide 3-kinase signaling and FoxO transcription factors in rheumatoid arthritis. Biochem. Soc. Trans. 34, 727–730 (2006).

    Article  CAS  Google Scholar 

  13. Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3, 317–330 (2003).

    Article  CAS  Google Scholar 

  14. Ma, Y-Q., Plow, E.F. & Geng, J.-G. P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of αMβ2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils. Blood 104, 2549–2556 (2004).

    Article  CAS  Google Scholar 

  15. Atarashi, K., Hirata, T., Matsumoto, M., Kanemitsu, N. & Miyasaka, M. Rolling of Th1 cells via P-selectin glycoprotein ligand-1 stimulates LFA-1-mediated cell binding to ICAM-1. J. Immunol. 174, 1424–1432 (2005).

    Article  CAS  Google Scholar 

  16. Woollard, K.J. et al. Raised plasma soluble P-selectin in peripheral arterial occlusive disease enhances leukocyte adhesion. Circ. Res. 98, 149–156 (2006).

    Article  CAS  Google Scholar 

  17. Blanks, J.E., Moll, T., Eytner, R. & Vestweber, D. Stimulation of P-selectin glycoprotein ligand-1 on mouse neutrophils activates β2-integrin mediated cell attachment to ICAM-1. Eur. J. Immunol. 28, 433–443 (1998).

    Article  CAS  Google Scholar 

  18. Evangelista, V. et al. Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the β2 integrin CD11b/CD18. Blood 88, 4183–4194 (1996).

    CAS  PubMed  Google Scholar 

  19. Evangelista, V. et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 93, 876–885 (1999).

    CAS  PubMed  Google Scholar 

  20. Dunne, J.L., Ballantyne, C.M., Beaudet, A.L. & Ley, K. Control of leukocyte rolling velocity in TNF-α-induced inflammation by LFA-1 and Mac-1. Blood 99, 336–341 (2002).

    Article  CAS  Google Scholar 

  21. Dunne, J.L., Collins, R.G., Beaudet, A.L., Ballantyne, C.M. & Ley, K. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-α-induced inflammation. J. Immunol. 171, 6105–6111 (2003).

    Article  CAS  Google Scholar 

  22. Fukushi, M. et al. Identification and cloning of a novel cellular protein Naf1, Nef-associated factor 1, that increases cell surface CD4 expression. FEBS Lett. 442, 83–88 (1999).

    Article  CAS  Google Scholar 

  23. Beyaert, R., Heyninck, K. & Huffel, S.V. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60, 1143–1151 (2000).

    Article  CAS  Google Scholar 

  24. Gupta, K., Ott, D., Hope, T.J., Siliciano, R.F. & Boeke, J.D. A human nuclear shuttling protein that interacts with human immunodeficiency virus type 1 matrix is packaged into virions. J. Virol. 74, 11811–11824 (2000).

    Article  CAS  Google Scholar 

  25. Geng, J.-G. et al. Expression of a P-selectin ligand in zona pellucida of porcine oocytes and P-selectin on acrosomal membrane of porcine sperm cells. Potential implications for their involvement in sperm-egg interactions. J. Cell Biol. 137, 743–754 (1997).

    Article  CAS  Google Scholar 

  26. Serrador, J.M. et al. A juxta-membrane amino acid sequence of P-selectin glycoprotein ligand-1 is involved in moesin binding and ezrin/radixin/moesin-directed targeting at the trailing edge of migrating lymphocytes. Eur. J. Immunol. 32, 1560–1566 (2002).

    Article  CAS  Google Scholar 

  27. Hu, Y. et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat. Genet. 36, 453–461 (2004).

    Article  CAS  Google Scholar 

  28. Fittipaldi, A. & Giacca, M. Transcellular protein transduction using the Tat protein of HIV-1. Adv. Drug Deliv. Rev. 57, 597–608 (2005).

    Article  CAS  Google Scholar 

  29. Forsyth, K.D. & Levinsky, R.J. Preparative procedures of cooling and re-warming increase leukocyte integrin expression and function on neutrophils. J. Immunol. Methods 128, 159–163 (1990).

    Article  CAS  Google Scholar 

  30. Glasser, L. & Fiederlein, R.L. The effect of various cell separation procedures on assays of neutrophil function. A critical appraisal. Am. J. Clin. Pathol. 93, 662–669 (1990).

    Article  CAS  Google Scholar 

  31. Kuijpers, T.W. et al. Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation. Blood 78, 1105–1111 (1991).

    CAS  PubMed  Google Scholar 

  32. Simon, S.I., Hu, Y., Vestweber, D. & Smith, C.W. Neutrophil tethering on E-selectin activates β2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J. Immunol. 164, 4348–4358 (2000).

    Article  CAS  Google Scholar 

  33. Weber, C. & Springer, T.A. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to αIIbβ3 and stimulated by platelet-activating factor. J. Clin. Invest. 100, 2085–2093 (1997).

    Article  CAS  Google Scholar 

  34. Cully, M., You, H., Levine, A.J. & Mak, T.W. Beyond PTEN mutation: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 6, 184–192 (2006).

    Article  CAS  Google Scholar 

  35. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  36. Nolte, D. et al. Leukocyte rolling in venules of striated muscle and skin is mediated by P-selectin, not by L-selectin. Am. J. Physiol. 267, H1637–H1642 (1994).

    CAS  PubMed  Google Scholar 

  37. Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12, 665–676 (2000).

    Article  CAS  Google Scholar 

  38. Chen, M. & Geng, J-G. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch. Immunol. Ther. Exp. 54, 75–84 (2006).

    Article  CAS  Google Scholar 

  39. Ushiyama, S., Laue, T.M., Moore, K.L., Erickson, H.P. & McEver, R.P. Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J. Biol. Chem. 268, 15229–15237 (1993).

    CAS  PubMed  Google Scholar 

  40. Barkalow, F.J., Barkalow, K.L. & Mayadas, T.N. Dimerization of P-selectin in platelets and endothelial cells. Blood 96, 3070–3077 (2000).

    CAS  PubMed  Google Scholar 

  41. Nandi, A., Estess, P. & Siegelman, M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest: CD44 association with VLA-4 in T cell extravasation. Immunity 20, 455–465 (2004).

    Article  CAS  Google Scholar 

  42. Korade-Mirnics, Z. & Corey, S.J. Src kinase-mediated signaling in leukocytes. J. Leukoc. Biol. 68, 603–613 (2000).

    CAS  PubMed  Google Scholar 

  43. Piccardoni, P. et al. Platelet/polymorphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin. Blood 98, 108–116 (2001).

    Article  CAS  Google Scholar 

  44. Totani, L. et al. Src-family kinases mediate an outside-in signal necessary for β2 integrins to achieve full activation and sustain firm adhesion of polymorphonuclear leucocytes tethered on E-selectin. Biochem. J. 396, 89–98 (2006).

    Article  CAS  Google Scholar 

  45. Giagulli, C. et al. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating β2 integrin affinity and valency in neutrophils, but are required for β2 integrin-mediated outside-in signaling involved in sustained adhesion. J. Immunol. 177, 604–611 (2006).

    Article  CAS  Google Scholar 

  46. Bullard, D.C. et al. P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J. Clin. Invest. 95, 1782–1788 (1995).

    Article  CAS  Google Scholar 

  47. Ma, L., Raycroft, L., Asa, D., Anderson, D.C. & Geng, J-G. A sialoglycoprotein from human leukocytes functions as a ligand for P-selectin. J. Biol. Chem. 269, 27739–27746 (1994).

    CAS  PubMed  Google Scholar 

  48. Croce, K., Freedman, S.J., Furie, B.C. & Furie, B. Interaction between soluble P-selectin and soluble P-selectin glycoprotein ligand 1: equilibrium binding analysis. Biochemistry 37, 16472–16480 (1998).

    Article  CAS  Google Scholar 

  49. Geng, J.-G. et al. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343, 757–760 (1990).

    Article  CAS  Google Scholar 

  50. Boxio, R., Bossenmeyer-Pourie, C., Steinckwich, N., Dournon, C. & Nusse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 75, 604–611 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Vanhaesebroeck (Ludwig Institute for Cancer Research) for p110δ-mutant mice; J. Downward (Imperial Cancer Research Fund) for the plasmid encoding p85; and L. Li (Shanghai Institutes for Biological Sciences) for the plasmid encoding PTEN. Supported by the National Science Foundation of China (30370694, 30421005, 30623003, 30400245 and 30630036), the Ministry of Science and Technology of China (2002CB513006, 2006CB943902 and 2006AA02Z169), the Chinese Academy of Sciences (KSCX2-YW-R-67 and KJCX2-YW-H08), the Shanghai Municipal Commission for Science and Technology (04JC14078, 06DZ22032, 55407035 and 058014578) and the National Institutes of Health (RO1AI064743 and P50HL081011).

Author information

Authors and Affiliations

Authors

Contributions

H.-B.W., J.-T.W., L.Z., Z.H.G., W.-L.X. and T.X. did the research and analyzed the data; Y.H., X.Z., E.F.P., M.C. and J.-G.G. designed the research; and J.-G.G. wrote the manuscript.

Corresponding authors

Correspondence to Ming Chen or Jian-Guo Geng.

Ethics declarations

Competing interests

The authors have applied for a patent in China based on this work (application 200710041403.0).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Methods (PDF 1632 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HB., Wang, JT., Zhang, L. et al. P-selectin primes leukocyte integrin activation during inflammation. Nat Immunol 8, 882–892 (2007). https://doi.org/10.1038/ni1491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing