Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of T cell receptor-α gene recombination by transcription

This article has been updated

Abstract

Despite the longstanding correlation between transcription and variable-(diversity)-joining (V(D)J) recombination, it is unknown whether transcription itself can direct recombinase targeting. Here we show that blockade of transcriptional elongation through the mouse T cell receptor-α (Tcra) locus suppressed Vα-to-Jα recombination and chromatin remodeling of Jα segments. Transcriptional blockade also derepressed cryptic Jα promoters. Our results demonstrate two key functions for transcription in Tcra locus regulation. Transcription increases the recombination of Jα segments located within several kilobases of a promoter and prevents the activation of downstream promoters through transcriptional interference. These influences promote an ordered progression of Tcra locus recombination events and selection of a robust Tcra repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tcra locus and gene targeting.
Figure 2: Transcription termination in 56R mice.
Figure 3: Jα use and rearrangements in 56R and 56I mice.
Figure 4: Jα histone modifications in 56R mice.
Figure 5: Jα germline transcription in 56R mice.

Similar content being viewed by others

Change history

  • 07 September 2006

    In the version of this article initially published online, the third sentence of the third paragraph of the results section is incorrect. The correct sentence is "We reasoned that a phenotype change resulting from the 56R approach could result from sequence deletion, whereas a phenotype change resulting from the 56I approach could result from the increased distance between Jα segments." The error has been corrected for all versions of the article.

References

  1. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Yancopoulos, G.D. & Alt, F.W. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hesslein, D.G. & Schatz, D.G. Factors and forces controlling V(D)J recombination. Adv. Immunol. 78, 169–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Sikes, M.L., Meade, A., Tripathi, R., Krangel, M.S. & Oltz, E.M. Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc. Natl. Acad. Sci. USA 99, 12309–12314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tripathi, R.K. et al. Definition of a T-cell receptor β gene core enhancer of V(D)J recombination by transgenic mapping. Mol. Cell. Biol. 20, 42–53 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fernex, C., Capone, M. & Ferrier, P. The V(D)J recombinational and transcriptional activities of the immunoglobulin heavy-chain intronic enhancer can be mediated through distinct protein-binding sites in a transgenic substrate. Mol. Cell. Biol. 15, 3217–3226 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Angelin-Duclos, C. & Calame, K. Evidence that immunoglobulin VH-DJ recombination does not require germ line transcription of the recombining variable gene segment. Mol. Cell. Biol. 18, 6253–6264 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Okada, A., Mendelsohn, M. & Alt, F. Differential activation of transcription versus recombination of transgenic T cell receptor β variable region gene segments in B and T lineage cells. J. Exp. Med. 180, 261–272 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Krangel, M.S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bouvier, G. et al. Deletion of the mouse T-cell receptor β gene enhancer blocks αβ T-cell development. Proc. Natl. Acad. Sci. USA 93, 7877–7881 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sleckman, B.P., Bardon, C.G., Ferrini, R., Davidson, L. & Alt, F.W. Function of the TCR α enhancer in αβ and γδ T cells. Immunity 7, 505–515 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Whitehurst, C.E., Chattopadhyay, S. & Chen, J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCR β locus by a germline promoter. Immunity 10, 313–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Villey, I., Caillol, D., Selz, F., Ferrier, P. & de Villartay, J.-P. Defect in rearrangement of the most 5′ TCR-Jα following targeted deletion of T early α (TEA): implications for TCR α locus accessibility. Immunity 5, 331–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Oestreich, K.J. et al. Regulation of TCR β gene assembly by a promoter/enhancer holocomplex. Immunity 24, 381–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Weinmann, A.S., Plevy, S.E. & Smale, S.T. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 11, 665–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Krogan, N.J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637–651 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654–663 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Targeted recruitment of Set1 histone methyltransferase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Wittschieben, B.O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Schwabish, M.A. & Struhl, K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol. Cell 22, 415–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kristjuhan, A. & Svejstrup, J.Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 23, 4243–4252 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell 5, 377–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Krangel, M.S., Carabana, J., Abarrategui, I., Schlimgen, R. & Hawwari, A. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor α/δ locus. Immunol. Rev. 200, 224–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Thompson, S.D., Pelkonen, J. & Hurwitz, J.L. First T cell receptor α gene rearrangements during T cell ontogeny skew to the 5′ region of the Jα locus. J. Immunol. 145, 2347–2352 (1990).

    CAS  PubMed  Google Scholar 

  29. Petrie, H.T., Livak, F., Burtrum, D. & Mazel, S. T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J. Exp. Med. 182, 121–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Guo, J. et al. Regulation of the TCR α repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3, 469–476 (2002).

    Article  PubMed  Google Scholar 

  31. Wang, F., Huang, C.Y. & Kanagawa, O. Rapid deletion of rearranged T cell antigen receptor (TCR) Vα-Jα segment by secondary rearrangement in the thymus: role of continuous rearrangement of TCR α chain gene and positive selection in the T cell repertoire formation. Proc. Natl. Acad. Sci. USA 95, 11834–11839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buch, T., Rieux-Laucat, F., Forster, I. & Rajewsky, K. Failure of HY-specific thymocytes to escape negative selection by receptor editing. Immunity 16, 707–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Hawwari, A., Bock, C. & Krangel, M.S. Regulation of T cell receptor α gene assembly by a complex hierarchy of germline Jα promoters. Nat. Immunol. 6, 481–489 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mauvieux, L., Villey, I. & de Villartay, J-P. TEA regulates local TCR-Jα accessibility through histone acetylation. Eur. J. Immunol. 33, 2216–2222 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Deuschle, U., Hipskind, R.A. & Bujard, H. RNA polymerase II transcription blocked by Escherichia coli Lac repressor. Science 248, 480–483 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Yonaha, M. & Proudfoot, N.J. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol. Cell 3, 593–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Gromak, N., West, S. & Proudfoot, N.J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Foley, K.P. & Engel, J.D. Individual stage selector element mutations lead to reciprocal changes in β- vs. ε-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev. 6, 730–744 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Cullen, B.R., Lomedico, P.T. & Ju, G. Transcriptional interferece in avian retroviruses- implications for the promoter insertion model of leukaemogenesis. Nature 307, 241–245 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Corbin, V. & Maniatis, T. Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch. Nature 337, 279–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Martens, J.A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429, 571–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Santos-Rosa, H. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12, 1325–1332 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Kaplan, C.D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096–1099 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Z. et al. Transcription factor Pax5 (BSAP) transactivates the RAG-mediated VH-to-DJH rearrangement of immunoglobulin genes. Nat. Immunol. 7, 616–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Chaudhuri, J. & Alt, F.W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4, 541–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Dudley, D.D., Chaudhuri, J., Bassing, C.H. & Alt, F.W. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv. Immunol. 86, 43–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Farley, F.W., Soriano, P., Steffen, L.S. & Dymecki, S.M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Chen-Kiang, S. & Lavery, D.J. Pulse labeling of heterogeneous nuclear RNA in isolated nuclei. Methods Enzymol. 180, 82–96 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Bock (Duke University Knockout and Transgenic Mouse Resource) for the production of gene-targeted mice; L. Esper for technical assistance; H. Scrable (University of Virginia, Charlottesville, Virginia) for lacI mouse embryo fibroblasts; and B. Sleckman (Washington University School of Medicine, St. Louis, Missouri), E. Oltz (Vanderbilt University, Nashville, Tennessee), Y. Zhuang and T. Kepler for comments on the manuscript and advice. Supported by the National Institutes of Health (GM41052 to M.S.K.).

Author information

Authors and Affiliations

Authors

Contributions

I.A. did all the experiments; M.S.K. supervised the work; and I.A. and M.S.K. prepared the manuscript.

Corresponding author

Correspondence to Michael S Krangel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Luciferase assay. (PDF 80 kb)

Supplementary Table 1

Oligonucleotides for RT-PCR analysis of nuclear transcripts. (PDF 49 kb)

Supplementary Table 2

Oligonucleotides for nuclear run-on assay. (PDF 51 kb)

Supplementary Table 3

Oligonucleotides for Vα-to-Jα rearrangement analysis. (PDF 52 kb)

Supplementary Table 4

Oligonucleotides for chromatin immunoprecipitation analysis. (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abarrategui, I., Krangel, M. Regulation of T cell receptor-α gene recombination by transcription. Nat Immunol 7, 1109–1115 (2006). https://doi.org/10.1038/ni1379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing