Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of T cell receptor β allelic exclusion at a level beyond accessibility

Abstract

Allelic exclusion of Vβ-to-DJβ recombination depends on asynchronous rearrangement of alleles of the gene encoding T cell receptor β in double-negative thymocytes and feedback inhibition that is maintained in double-positive thymocytes. Feedback is thought to be enforced through downregulation of Vβ accessibility. In an attempt to override this negative regulation, we introduced the enhancer of the gene encoding T cell receptor α into the Vβ gene cluster downstream of Vβ12. In double-negative thymocytes, the introduced enhancer had no measurable effect on accessibility, but Vβ12 rearrangement was stimulated and Vβ12 allelic exclusion was partially subverted. In contrast, double-positive thymocytes showed increased Vβ transcription and accessibility, but feedback inhibition of Vβ-to-DJβ recombination remained intact. Our results indicate additional regulatory constraints on Vβ-to-DJβ recombination that operate beyond the accessibility barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tcrb locus and gene targeting.
Figure 2: Germline transcription in EαKI thymocytes.
Figure 3: Tcrb locus histone modifications in EαKI thymocytes.
Figure 4: Nucleosome positioning at the Vβ12 RSS in EαKI thymocytes.
Figure 5: Restriction endonuclease accessibility of Vβ gene segments in EαKI thymocytes.
Figure 6: Regulation of VDJβ rearrangement in EαKI thymocytes.
Figure 7: Vβ expression in EαKI mice.
Figure 8: Dual Vβ expression in EαKI mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jung, D. & Alt, F.W. Unraveling V(D)J recombination: Insights into gene regulation. Cell 116, 299–311 (2004).

    Article  CAS  Google Scholar 

  2. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).

    Article  CAS  Google Scholar 

  3. Krangel, M.S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).

    Article  CAS  Google Scholar 

  4. Khor, B. & Sleckman, B.P. Allelic exclusion at the TCRβ locus. Curr. Opin. Immunol. 14, 230–234 (2002).

    Article  CAS  Google Scholar 

  5. Mostoslavsky, R., Alt, F.W. & Rajewsky, K. The lingering enigma of the allelic exclusion mechanism. Cell 118, 539–544 (2004).

    Article  CAS  Google Scholar 

  6. Bergman, Y., Fisher, A. & Cedar, H. Epigenetic mechanisms that regulate antigen receptor gene expression. Curr. Opin. Immunol. 15, 176–181 (2003).

    Article  CAS  Google Scholar 

  7. Schlissel, M.S. Regulating antigen-receptor gene assembly. Nat. Rev. Immunol. 3, 890–899 (2003).

    Article  CAS  Google Scholar 

  8. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  9. Golding, A., Chandler, S., Ballestar, E., Wolffe, A.P. & Schlissel, M.S. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J. 18, 3712–3723 (1999).

    Article  CAS  Google Scholar 

  10. Kwon, J., Imbalzano, A.N., Matthews, A. & Oettinger, M.A. Accessiblity of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 2, 829–839 (1998).

    Article  CAS  Google Scholar 

  11. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    Article  CAS  Google Scholar 

  12. Baumann, M., Mamais, A., McBlane, F., Xiao, H. & Boyes, J. Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences. EMBO J. 22, 5197–5207 (2003).

    Article  CAS  Google Scholar 

  13. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of V(D)J recombination. Science 287, 495–498 (2000).

    Article  CAS  Google Scholar 

  14. Mathieu, N., Hempel, W.M., Spicuglia, S., Verthuy, C. & Ferrier, P. Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development: implications for the control of TCR-β locus recombination. J. Exp. Med. 192, 625–636 (2000).

    Article  CAS  Google Scholar 

  15. Goldmit, M., Schlissel, M., Cedar, H. & Bergman, Y. Differential accessibility at the κ chain locus plays a role in allelic exclusion. EMBO J. 21, 5255–5261 (2002).

    Article  CAS  Google Scholar 

  16. Ji, Y.H., Zhang, J.M., Lee, A.I., Cedar, H. & Bergman, Y. A multistep mechanism for the activation of rearrangement in the immune system. Proc. Natl. Acad. Sci. USA 100, 7557–7562 (2003).

    Article  CAS  Google Scholar 

  17. Morshead, K.B., Ciccone, D.N., Taverna, S.D., Allis, C.D. & Oettinger, M.A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl. Acad. Sci. USA 100, 11577–11582 (2003).

    Article  CAS  Google Scholar 

  18. Osipovich, O. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat. Immunol. 5, 309–316 (2004).

    Article  CAS  Google Scholar 

  19. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    Article  CAS  Google Scholar 

  20. Liang, H.-E. et al. The “dispensable” portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity 17, 639–651 (2002).

    Article  CAS  Google Scholar 

  21. Liang, H.E., Cado, D. & Schlissel, M. Variegated transcriptional activation of the immunoglobulin kappa locus in pre-B cells contribute to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  Google Scholar 

  22. Michie, A. & Zuniga-Pflucker, J. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311–323 (2002).

    Article  CAS  Google Scholar 

  23. Senoo, M. & Shinkai, Y. Regulation of Vβ germline transcription in RAG-deficient mice by the CD3ε-mediated signals: implications of Vβ transcriptional regulation in TCR β allelic exclusion. Int. Immunol. 10, 553–560 (1998).

    Article  CAS  Google Scholar 

  24. Tripathi, R., Jackson, A. & Krangel, M.S. A change in the structure of Vβ chromatin associated with TCRβ allelic exclusion. J. Immunol. 168, 2316–2324 (2002).

    Article  CAS  Google Scholar 

  25. Mathieu, N. et al. Assessing the role of the T cell receptor β gene enhancer in regulating coding joint formation during V(D)J recombination. J. Biol. Chem. 278, 18101–18109 (2003).

    Article  CAS  Google Scholar 

  26. Chattopadhyay, S., Whitehurst, C.E., Schwenk, F. & Chen, J. Biochemical and functional analysis of chromatin changes at the TCR-β gene locus during CD4CD8 to CD4+CD8+ thymocyte differentiation. J. Immunol. 160, 1256–1267 (1998).

    CAS  PubMed  Google Scholar 

  27. Whitehurst, C.E., Chattopadhyay, S. & Chen, J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCRβ locus by a germline promoter. Immunity 10, 313–322 (1999).

    Article  CAS  Google Scholar 

  28. Maes, J. et al. Chromatin remodeling at the Ig loci prior to V(D)J recombination. J. Immunol. 167, 866–874 (2001).

    Article  CAS  Google Scholar 

  29. Johnson, K., Angelin-Duclos, C., Park, S. & Calame, K.L. Changes in histone acetylation are associated with differences in accessibility of VH gene segments to V-DJ recombination during B-cell ontogeny and development. Mol. Cell. Biol. 23, 2438–2450 (2003).

    Article  CAS  Google Scholar 

  30. Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).

    Article  CAS  Google Scholar 

  31. Ryu, C.J. et al. The T-cell receptor β variable gene promoter is required for efficient Vβ rearrangement but not allelic exclusion. Mol. Cell. Biol. 24, 7015–7023 (2004).

    Article  CAS  Google Scholar 

  32. Hernandez-Munain, C., Sleckman, B.P. & Krangel, M.S. A developmental switch from TCRδ enhancer to TCRα enhancer function during thymocyte maturation. Immunity 10, 723–733 (1999).

    Article  CAS  Google Scholar 

  33. Capone, M. et al. TCRβ and TCRα gene enhancers confer tissue- and stage-specificity on V(D)J recombination events. EMBO J. 12, 4335–4346 (1993).

    Article  CAS  Google Scholar 

  34. Senoo, M. et al. Limited effect of chromatin remodeling on Dβ-to-Jβ recombination in CD4+CD8+ thymocyte: implications for a new aspect in the regulation of TCRβ gene recombination. Int. Immunol. 13, 1405–1414 (2001).

    Article  CAS  Google Scholar 

  35. Bassing, C.H. et al. Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 405, 583–586 (2000).

    Article  CAS  Google Scholar 

  36. Davodeau, F. et al. Dual T cell receptor β chain expression on human T lymphocytes. J. Exp. Med. 181, 1391–1398 (1995).

    Article  CAS  Google Scholar 

  37. Padovan, E. et al. Normal T lymphocytes can express two different T cell receptor β chains: implications for the mechanism of allelic exclusion. J. Exp. Med. 181, 1587–1591 (1995).

    Article  CAS  Google Scholar 

  38. King, A.G., Kondo, M., Scherer, D.C. & Weissman, I.L. Lineage infidelity in myeloid cells with TCR gene rearrangement: A latent developmental potential of proT cells revealed by ectopic cytokine receptor signaling. Proc. Natl. Acad. Sci. USA 99, 4508–4513 (2002).

    Article  CAS  Google Scholar 

  39. Spicuglia, S. et al. TCRα enhancer activation occurs via a conformational change of a pre-assembled nucleoprotein complex. EMBO J. 19, 2034–2045 (2000).

    Article  CAS  Google Scholar 

  40. Ryu, C.J. et al. The T cell receptor β enhancer promotes access and pairing of Dβ and Jβ gene segments during V(D)J recombination. Proc. Natl. Acad. Sci. USA 100, 13465–13470 (2003).

    Article  CAS  Google Scholar 

  41. Senoo, M. et al. Increase of TCR Vβ accessibility within Eβ regulatory region influences its recombination frequency but not allelic exclusion. J. Immunol. 171, 829–835 (2003).

    Article  CAS  Google Scholar 

  42. Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).

    Article  CAS  Google Scholar 

  43. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  Google Scholar 

  44. Roldán, E. et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol. 6, 31–41 (2005).

    Article  Google Scholar 

  45. Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  Google Scholar 

  46. Roberts, J.L., Lauzurica, P. & Krangel, M.S. Developmental regulation of VDJ recombination by the core fragment of the T cell receptor α enhancer. J. Exp. Med. 185, 131–140 (1997).

    Article  CAS  Google Scholar 

  47. Boyd, K.E., Wells, J., Gutman, J., Bartley, S.M. & Farnham, P.J. c-Myc target gene specificity is determined by a post-DNA-binding mechanism. Proc. Natl. Acad. Sci. USA 95, 13887–13892 (1998).

    Article  CAS  Google Scholar 

  48. Boyes, J. & Felsenfeld, G. Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site. EMBO J. 15, 2496–2507 (1996).

    Article  CAS  Google Scholar 

  49. McMurry, M.T., Hernandez-Munain, C., Lauzurica, P. & Krangel, M.S. Enhancer control of local accessibility to V(D)J recombinase. Mol. Cell. Biol. 17, 4553–4561 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Martinek of the Duke University Cancer Center Flow Cytometry Facility for help with cell sorting and analysis; T. Wehrly and H. Boutrid for technical assistance; and Y. Zhuang, Y.-W. He and G. Kelsoe for critical review of the manuscript. Supported by the National Institutes of Health (AI49934 to M.S.K. and NIAID-T32 AI052077 to H.D.K.) and National Science Foundation (A.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S Krangel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

DNase Ihypersensitivity of Eαi in DN and DP thymocytes of EαKI mice. (PDF 119 kb)

Supplementary Fig. 2

Strategy for restriction endonuclease accessibility assay. (PDF 45 kb)

Supplementary Table 1

Oligonucleotides used as PCR primers or radiolabeled probes. (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, A., Kondilis, H., Khor, B. et al. Regulation of T cell receptor β allelic exclusion at a level beyond accessibility. Nat Immunol 6, 189–197 (2005). https://doi.org/10.1038/ni1157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing