Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intrinsic immunity: a front-line defense against viral attack

Abstract

In addition to the conventional innate and acquired immune responses, complex organisms have evolved an array of dominant, constitutively expressed genes that suppress or prevent viral infections. Two major cellular defenses against infection by retroviruses are the Fv1 and TRIM5 class of inhibitors that target incoming retroviral capsids and the APOBEC3 class of cytidine deaminases that hypermutate and destabilize retroviral genomes. Additional, less well characterized activities also inhibit viral replication. Here, the present understanding of these 'intrinsic' immune mechanisms is reviewed and their role in protection from retroviral infection is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capsid-specific restriction factors.
Figure 2: Inhibition of retroviral replication by cytidine deamination and its restoration by lentivirus Vif proteins.

Similar content being viewed by others

References

  1. Sommerfelt, M.A. & Weiss, R.A. Receptor interference groups of 20 retroviruses plating on human cells. Virology 176, 58–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Miller, A.D. & Wolgamot, G. Murine retroviruses use at least six different receptors for entry into Mus dunni cells. J. Virol. 71, 4531–4535 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ikeda, H. & Sugimura, H. Fv-4 resistance gene: a truncated endogenous murine leukemia virus with ecotropic interference properties. J. Virol. 63, 5405–5412 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mura, M. et al. Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc. Natl. Acad. Sci. USA 101, 11117–11122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Odaka, T. & Yamamoto, T. Inheritance of susceptibility to Friend mouse leukemia virus. 11. Spleen foci method applied to test the susceptibility of crossbred progeny between a sensitive and a resistant strain. Jpn. J. Exp. Med. 35, 311–314 (1965).

    CAS  PubMed  Google Scholar 

  6. Lilly, F. Susceptibility to two strains of Friend leukemia virus in mice. Science 155, 461–462 (1967).

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki, S. FV-4: a new gene affecting the splenomegaly induction by Friend leukemia virus. Jpn. J. Exp. Med. 45, 473–478 (1975).

    CAS  PubMed  Google Scholar 

  8. Gardner, M.B., Rasheed, S., Pal, B.K., Estes, J.D. & O'Brien, S.J. Akvr-1, a dominant murine leukemia virus restriction gene, is polymorphic in leukemia-prone wild mice. Proc. Natl. Acad. Sci. USA 77, 531–535 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rasheed, S. & Gardner, M.B. Resistance to fibroblasts and hematopoietic cells to ecotropic murine leukemia virus infection; an Akvr-1R gene effect. Int. J. Cancer 31, 491–496 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Hartley, J.W., Rowe, W.P. & Huebner, R.J. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J. Virol. 5, 221–225 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pincus, T., Hartley, J.W. & Rowe, W.P. A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J. Exp. Med. 133, 1219–1233 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rowe, W.P. Studies of genetic transmission of murine leukemia virus by AKR mice. I. Crosses with Fv-1 n strains of mice. J. Exp. Med. 136, 1272–1285 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rowe, W.P. & Hartley, J.W. Studies of genetic transmission of murine leukemia virus by AKR mice. II. Crosses with Fv-1 b strains of mice. J. Exp. Med. 136, 1286–1301 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kozak, C.A. Analysis of wild-derived mice for Fv-1 and Fv-2 murine leukemia virus restriction loci: a novel wild mouse Fv-1 allele responsible for lack of host range restriction. J. Virol. 55, 281–285 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. DesGroseillers, L. & Jolicoeur, P. Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J. Virol. 48, 685–696 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kozak, C.A. & Chakraborti, A. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225, 300–305 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Decleve, A., Niwa, O., Gelmann, E. & Kaplan, H.S. Replication kinetics of N- and B-tropic murine leukemia viruses on permissive and nonpermissive cells in vitro. Virology 65, 320–332 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Duran-Troise, G., Bassin, R.H., Rein, A. & Gerwin, B.I. Loss of Fv-1 restriction in Balb/3T3 cells following infection with a single N tropic murine leukemia virus particle. Cell 10, 479–488 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Pincus, T., Hartley, J.W. & Rowe, W.P. A major genetic locus affecting resistance to infection with murine leukemia viruses. IV. Dose-response relationships in Fv-1-sensitive and resistant cell cultures. Virology 65, 333–342 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Tennant, R.W., Otten, J.A., Brown, A., Yang, W.K. & Kennel, S.J. Characterization of Fv-1 host range strains of murine retroviruses by titration and p30 protein characteristics. Virology 99, 349–357 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Boone, L.R., Innes, C.L. & Heitman, C.K. Abrogation of Fv-1 restriction by genome-deficient virions produced by a retrovirus packaging cell line. J. Virol. 64, 3376–3381 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bassin, R.H., Duran-Troise, G., Gerwin, B.I. & Rein, A. Abrogation of Fv-1b restriction with murine leukemia viruses inactivated by heat or by gamma irradiation. J. Virol. 26, 306–315 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Best, S., Le Tissier, P., Towers, G. & Stoye, J.P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382, 826–829 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, W.R. & Stoye, J.P. Consensus structural models for the amino terminal domain of the retrovirus restriction gene Fv1 and the murine leukaemia virus capsid proteins. BMC Struct. Biol. 4, 1 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ganser, B.K., Cheng, A., Sundquist, W.I. & Yeager, M. Three-dimensional structure of the M-MuLV CA protein on a lipid monolayer: a general model for retroviral capsid assembly. EMBO J. 22, 2886–2892 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bock, M., Bishop, K.N., Towers, G. & Stoye, J.P. Use of a transient assay for studying the genetic determinants of Fv1 restriction. J. Virol. 74, 7422–7430 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bishop, K.N., Bock, M., Towers, G. & Stoye, J.P. Identification of the regions of Fv1 necessary for murine leukemia virus restriction. J. Virol. 75, 5182–5188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Towers, G. et al. A conserved mechanism of retrovirus restriction in mammals. Proc. Natl. Acad. Sci. USA 97, 12295–12299 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl. Acad. Sci. USA 99, 11914–11919 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl. Acad. Sci. USA 99, 11920–11925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munk, C., Brandt, S.M., Lucero, G. & Landau, N.R. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc. Natl. Acad. Sci. USA 99, 13843–13848 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hofmann, W. et al. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol. 73, 10020–10028 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Owens, C.M., Yang, P.C., Gottlinger, H. & Sodroski, J. Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J. Virol. 77, 726–731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dorfman, T. & Gottlinger, H.G. The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811. J. Virol. 70, 5751–5757 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatziioannou, T., Cowan, S., Goff, S.P., Bieniasz, P.D. & Towers, G. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J. 22, 385–94 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hatziioannou, T., Perez-Caballero, D., Yang, A., Cowan, S. & Bieniasz, P.D. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5α. Proc. Natl. Acad. Sci. USA 101, 10774–10779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keckesova, Z., Ylinen, L.M. & Towers, G.J. The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc. Natl. Acad. Sci. USA 101, 10780–10785 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perron, M.J. et al. TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc. Natl. Acad. Sci. USA 101, 11827–11832 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sayah, D.M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Towers, G.J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat. Med. 9, 1138–1143 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. von Schwedler, U.K. et al. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17, 1555–1568 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ganser, B.K., Li, S., Klishko, V.Y., Finch, J.T. & Sundquist, W.I. Assembly and analysis of conical models for the HIV-1 core. Science 283, 80–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V. & Goff, S.P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Yap, M.W. & Stoye, J.P. Intracellular localisation of Fv1. Virology 307, 76–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, L. et al. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta. Exp. Cell Res. 288, 84–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Schwartz, O., Marechal, V., Friguet, B., Arenzana-Seisdedos, F. & Heard, J.M. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J. Virol. 72, 3845–3850 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Butler, S.L., Johnson, E.P. & Bushman, F.D. Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J. Virol. 76, 3739–3747 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hicke, L. A new ticket for entry into budding vesicles-ubiquitin. Cell 106, 527–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Pryciak, P.M. & Varmus, H.E. Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro. J. Virol. 66, 5959–5966 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gabuzda, D.H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66, 6489–6495 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Madani, N. & Kabat, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J. Virol. 72, 10251–10255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Simon, J.H., Gaddis, N.C., Fouchier, R.A. & Malim, M.H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med. 4, 1397–1400 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A.J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Yu, Q. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11, 435–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sleigh, R., Sharkey, M., Newman, M.A., Hahn, B. & Stevenson, M. Differential association of uracil DNA glycosylase with SIVSM Vpr and Vpx proteins. Virology 245, 338–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Bouhamdan, M. et al. Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme. J. Virol. 70, 697–704 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Selig, L. et al. Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. J. Virol. 71, 4842–4846 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Willetts, K.E. et al. DNA repair enzyme uracil DNA glycosylase is specifically incorporated into human immunodeficiency virus type 1 viral particles through a Vpr-independent mechanism. J. Virol. 73, 1682–1688 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mansky, L.M., Preveral, S., Selig, L., Benarous, R. & Benichou, S. The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J. Virol. 74, 7039–7047 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Wiegand, H.L., Doehle, B.P., Bogerd, H.P. & Cullen, B.R. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451–2458 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng, Y.H. et al. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J. Virol. 78, 6073–6076 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bishop, K.N. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr. Biol. 14, 1392–1396 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Liddament, M.T., Brown, W.L., Schumacher, A.J. & Harris, R.S. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14, 1385–1391 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Sheehy, A.M., Gaddis, N.C. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Marin, M., Rose, K.M., Kozak, S.L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med. 9, 1398–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Mehle, A. et al. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J. Biol. Chem. 279, 7792–7798 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Conticello, S.G., Harris, R.S. & Neuberger, M.S. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr. Biol. 13, 2009–2013 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W.C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell 12, 591–601 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Turelli, P., Mangeat, B., Jost, S., Vianin, S. & Trono, D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 303, 1829 (2004).

    Article  PubMed  Google Scholar 

  79. Ngui, S.L., Hallet, R. & Teo, C.G. Natural and iatrogenic variation in hepatitis B virus. Rev. Med. Virol. 9, 183–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. USA 101, 4262–4267 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bishop, K.N., Holmes, R.K., Sheehy, A.M. & Malim, M.H. APOBEC-mediated editing of viral RNA. Science 305, 645 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Gao, G., Guo, X. & Goff, S.P. Inhibition of retroviral RNA production by ZAP a CCCH-type zinc finger protein. Science 297, 1703–1706 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Bick, M.J. et al. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J. Virol. 77, 11555–11562 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Varthakavi, V., Smith, R.M., Bour, S.P., Strebel, K. & Spearman, P. Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc. Natl. Acad. Sci. USA 100, 15154–15159 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gottlinger, H.G., Dorfman, T., Cohen, E.A. & Haseltine, W.A. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc. Natl. Acad. Sci. USA 90, 7381–7385 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Geraghty, R.J., Talbot, K.J., Callahan, M., Harper, W. & Panganiban, A.T. Cell type-dependence for Vpu function. J. Med. Primatol. 23, 146–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Sakai, H., Tokunaga, K., Kawamura, M. & Adachi, A. Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J. Gen. Virol. 76, 2717–2722 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Turelli, P. et al. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol. Cell 7, 1245–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Yap, M.W., Nisole, S., Lynch, C. & Stoye, J.P. Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc. Natl. Acad. Sci. USA 101, 10786–10791 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Berthoux, L. et al. As2O3 enhances retroviral reverse transcription and counteracts Ref1 antiviral activity. J. Virol. 77, 3167–3180 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bogerd, H.P., Doehle, B.P., Wiegand, H.L. & Cullen, B.R. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA 101, 3770–3774 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schrofelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA 101, 3927–3932 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Mangeat, B., Turelli, P., Liao, S. & Trono, D. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J. Biol. Chem. 279, 14481–14483 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Xu, H. et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA 101, 5652–5657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Svarovskaia, E.S. et al. Human APOBEC3G is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J. Biol. Chem. 279, 35822–35828 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Cen, S. et al. The interaction between HIV-1 Gag and APOBEC3G. J. Biol. Chem. 279, 33177–33184 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Alce, T.M. & Popik, W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. 279, 34083–34086 J. Biol. Chem. (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Zennou, V., Perez-Caballero, D. & Bieniasz, P.D. APOBEC3G incorporation into HIV-1 particles J. Virology (in the press).

  99. Schafer, A., Bogerd, H.P. & Cullen, B.R. Specific packaging of APOBEC3G into HIV-1 Virions is mediated by the nucleocapsid domain of the Gag polyprotein precursor. Virology (in the press).

  100. Kobayashi, M. et al. APOBEC3G targets specific virus species. J. Virol. 78, 8238–8244 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank T. Hatziioannou for comments on the manuscript; and B. Cullen, M. Malim and M. Palmarini for sharing manuscripts before publication. Supported by the National Institutes of Health, the American Foundation for AIDS Research, GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D Bieniasz.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieniasz, P. Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5, 1109–1115 (2004). https://doi.org/10.1038/ni1125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing