Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulation of innate and adaptive immunity by cytomegaloviruses

Abstract

The coordinated activities of innate and adaptive immunity are critical for effective protection against viruses. To counter this, some viruses have evolved sophisticated strategies to circumvent immune cell recognition. In particular, cytomegaloviruses encode large arsenals of molecules that seek to subvert T cell and natural killer cell function via a remarkable array of mechanisms. Consequently, these ‘immunoevasins’ play a fundamental role in shaping the nature of the immune system by driving the evolution of new immune receptors and recognition mechanisms. Here, we review the diverse strategies adopted by cytomegaloviruses to target immune pathways and outline the host’s response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the major HCMV and MCMV immunoevasin families.
Fig. 2: Overview of CMV immune evasion strategies.

Similar content being viewed by others

References

  1. Murphy, E. & Shenk, T. Human cytomegalovirus genome. Curr. Top Microbiol. Immunol. 325, 1–19 (2008).

    CAS  PubMed  Google Scholar 

  2. Rawlinson, W. D., Farrell, H. E. & Barrell, B. G. Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol. 70, 8833–8849 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vink, C., Beuken, E. & Bruggeman, C. A. Complete DNA sequence of the rat cytomegalovirus genome. J. Virol. 74, 7656–7665 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swinkels, B. W., Geelen, J. L., Wertheim-van Dillen, P., van Es, A. A. & van der Noordaa, J. Initial characterization of four cytomegalovirus strains isolated from chimpanzees. Brief report. Arch. Virol. 82, 125–128 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Powers, C. & Fruh, K. Rhesus CMV: an emerging animal model for human CMV. Med. Microbiol. Immunol. 197, 109–115 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Babic, M., Krmpotic, A. & Jonjic, S. All is fair in virus-host interactions: NK cells and cytomegalovirus. Trends Mol. Med. 17, 677–685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cannon, M. J., Schmid, D. S. & Hyde, T. B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 20, 202–213 (2010).

    Article  PubMed  Google Scholar 

  8. Boppana, S. B. & Britt, W. J. in Cytomegaloviruses: from Molecular Pathogenesis to Intervention Vol. 2 (ed. Reddehase M. J.) (Caister Academic Press, 2013).

  9. Manicklal, S., Emery, V. C., Lazzarotto, T., Boppana, S. B. & Gupta, R. K. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 26, 86–102 (2013).

    Google Scholar 

  10. Scalzo, A. A., Corbett, A. J., Rawlinson, W. D., Scott, G. M. & Degli-Esposti, M. A. The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol. Cell Biol. 85, 46–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Orange, J. S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 132, 515–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fehniger, T. A. et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26, 798–811 (2007).

    Article  CAS  Google Scholar 

  15. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cerwenka, A. & Lanier, L. L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Reddehase, M. J. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat. Rev. Immunol. 2, 831–844 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Jonjic, S., Mutter, W., Weiland, F., Reddehase, M. J. & Koszinowski, U. H. Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J. Exp. Med. 169, 1199–1212 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Jonjic, S., Pavic, I., Lucin, P., Rukavina, D. & Koszinowski, U. H. Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J. Virol. 64, 5457–5464 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Verma, S. et al. Cytomegalovirus-specific CD4 T cells are cytolytic and mediate vaccine protection. J. Virol. 90, 650–658 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Jeitziner, S. M., Walton, S. M., Torti, N. & Oxenius, A. Adoptive transfer of cytomegalovirus-specific effector CD4+ T cells provides antiviral protection from murine CMV infection. Eur. J. Immunol. 43 (2013).

  22. Walton, S. M. et al. Absence of cross-presenting cells in the salivary gland and viral immune evasion confine cytomegalovirus immune control to effector CD4 T cells. PLOS Pathog. 7, e1002214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blyth, E. et al. Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood 121, 3745–3758 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Lilleri, D. et al. Human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in adult allogeneic hematopoietic stem cell transplant recipients and immune control of viral infection. Haematologica 93, 248–256 (2008).

    Article  PubMed  Google Scholar 

  25. Quinnan, G. V. et al. Cytotoxic t cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N. Engl. J. Med. 307, 7–13 (1982).

    Article  PubMed  Google Scholar 

  26. Reusser, P., Riddell, S. R., Meyers, J. D. & Greenberg, P. D. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78, 1373–1380 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Gabanti, E. et al. Human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells are both required for prevention of HCMV disease in seropositive solid-organ transplant recipients. PLOS ONE 9, e106044 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gabanti, E. et al. Reconstitution of human cytomegalovirus-specific CD4+ T cells is critical for control of virus reactivation in hematopoietic stem cell transplant recipients but does not prevent organ infection. Biol. Blood Marrow Transplant. 21, 2192–2202 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Gamadia, L. E. et al. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101, 2686–2692 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Andoniou, C. E. et al. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat. Immunol. 6, 1011–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Andrews, D. M., Scalzo, A. A., Yokoyama, W. M., Smyth, M. J. & Degli-Esposti, M. A. Functional interactions between dendritic cells and NK cells during viral infection. Nat. Immunol. 4, 175–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Andrews, D. M. et al. Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J. Exp. Med. 207, 1333–1343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunn, W. et al. Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA 100, 14223–14228 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davison, A. J. et al. Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J. Gen. Virol. 84, 657–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Fielding, C. A. et al. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. eLife 6, e22206 (2017). This study identifies the US12 family to be a major new hub of immune regulation.

  37. Llano, M., Guma, M., Ortega, M., Angulo, A. & Lopez-Botet, M. Differential effects of US2, US6 and US11 human cytomegalovirus proteins on HLA class Ia and HLA-E expression: impact on target susceptibility to NK cell subsets. Eur. J. Immunol. 33, 2744–2754 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, T. R. et al. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J. Virol. 69, 4830–4841 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gewurz, B. E. et al. Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA 98, 6794–6799 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sekulin, K., Gorzer, I., Heiss-Czedik, D. & Puchhammer-Stockl, E. Analysis of the variability of CMV strains in the RL11D domain of the RL11 multigene family. Virus Genes 35, 577–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Fielding, C. A. et al. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLOS Pathog. 10, e1004058 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pande, N. T., Powers, C., Ahn, K. & Fruh, K. Rhesus cytomegalovirus contains functional homologues of US2, US3, US6, and US11. J. Virol. 79, 5786–5798 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Powers, C. J. & Fruh, K. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus. PLOS Pathog. 4, e1000150 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Revilleza, M. J. et al. How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J. Biomed. Biotechnol. 2011, 724607 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ziegler, H. et al. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6, 57–66 (1997).

    Article  CAS  Google Scholar 

  46. Hasan, M. et al. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J. Virol. 79, 2920–2930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krmpotic, A. et al. NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J. Exp. Med. 201, 211–220 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lodoen, M. B. et al. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J. Exp. Med. 200, 1075–1081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002). This study (and also reference 164) reports the first direct interaction between a viral ligand and an activating NK cell receptor.

    Article  CAS  PubMed  Google Scholar 

  50. Berry, R. et al. The structure of the cytomegalovirus-encoded m04 glycoprotein, a prototypical member of the m02 family of immunoevasins. J. Biol. Chem. 289, 23753–23763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sgourakis, N. G. et al. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 22, 1263–1273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aguilar, O. A. et al. A viral immunoevasin controls innate immunity by targeting the prototypical natural killer cell receptor family. Cell 169, 58–71 (2017). This study describes the identification of m12 as a ligand for inhibitory and activating NKR-P1 receptors (including NK1.1).

    Article  CAS  PubMed  Google Scholar 

  53. Babic, M. et al. Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo. J. Exp. Med. 207, 2663–2673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reusch, U. et al. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J. 18, 1081–1091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goodwin, C. M., Ciesla, J. H. & Munger, J. Who’s driving? human cytomegalovirus, interferon, and NFkappaB signaling. Viruses 10, E447 (2018).

    Article  PubMed  CAS  Google Scholar 

  56. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Ameres, S., Besold, K., Plachter, B. & Moosmann, A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. J. Immunol. 192, 5894–5905 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Barel, M. T. et al. Amino acid composition of alpha1/alpha2 domains and cytoplasmic tail of MHC class I molecules determine their susceptibility to human cytomegalovirus US11-mediated down-regulation. Eur. J. Immunol. 33 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Barel, M. T. et al. Human cytomegalovirus-encoded US2 differentially affects surface expression of MHC class I locus products and targets membrane-bound, but not soluble HLA-G1 for degradation. J. Immunol. 171, 6757–6765 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Wiertz, E. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996). This study and reference 60 provide the first mechanistic insight into how HCMV downregulates MHC-I surface expression.

    Article  CAS  PubMed  Google Scholar 

  62. Furman, M. H., Ploegh, H. L. & Tortorella, D. Membrane-specific, host-derived factors are required for US2- and US11-mediated degradation of major histocompatibility complex class I molecules. J. Biol. Chem. 277, 3258–3267 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, S. O. et al. Functional dissection of HCMV US11 in mediating the degradation of MHC class I molecules. Biochem. Biophys. Res. Commun. 330, 1262–1267 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    Article  CAS  Google Scholar 

  65. Hsu, J. L. et al. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLOS Pathog. 11, e1004811 (2015). This study uses proteomics to reveal the full breadth of molecules that can be targeted by US2 and highlights how a single immunoevasin can modulate multiple immune-related pathways.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Vahdati-Ben Arieh, S. et al. A single viral protein HCMV US2 affects antigen presentation and intracellular iron homeostasis by degradation of classical HLA class I and HFE molecules. Blood 101, 2858–2864 (2003).

    Article  PubMed  CAS  Google Scholar 

  67. Ben-Arieh, S. V. et al. Human cytomegalovirus protein US2 interferes with the expression of human HFE, a nonclassical class I major histocompatibility complex molecule that regulates iron homeostasis. J. Virol. 75, 10557–10562 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Han, J. et al. Human cytomegalovirus (HCMV) US2 protein interacts with human CD1d (hCD1d) and down-regulates invariant NKT (iNKT) cell activity. Mol. Cells 36, 455–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tomazin, R. et al. Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat. Med. 5, 1039–1043 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Park, B., Spooner, E., Houser, B. L., Strominger, J. L. & Ploegh, H. L. The HCMV membrane glycoprotein US10 selectively targets HLA-G for degradation. J. Exp. Med. 207, 2033–2041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Furman, M. H., Dey, N., Tortorella, D. & Ploegh, H. L. The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J. Virol. 76, 11753–11756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Blees, A. et al. Structure of the human MHC-I peptide-loading complex. Nature 551, 525–528 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Park, B. et al. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71–85 (2004).

    Article  CAS  Google Scholar 

  74. Jones, T. R. et al. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl Acad. Sci. USA 93, 11327–11333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huard, B. & Fruh, K. A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. Eur. J. Immunol. 30, 509–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621 (1997).

    Article  CAS  Google Scholar 

  77. Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. & Cresswell, P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl Acad. Sci. USA 94, 6904–6909 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hewitt, E. W., Gupta, S. S. & Lehner, P. J. The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J. 20, 387–396 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ziegler, H., Muranyi, W., Burgert, H. G., Kremmer, E. & Koszinowski, U. H. The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J. 19, 870–881 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ramnarayan, V. R. et al. Cytomegalovirus gp40/m152 uses TMED10 as ER anchor to retain MHC class I. Cell Rep. 23, 3068–3077 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319 (1986).

  82. Beck, S. & Barrell, B. G. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 331, 269–272 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Browne, H., Smith, G., Beck, S. & Minson, T. A complex between the MHC class I homologue encoded by human cytomegalovirus and beta 2 microglobulin. Nature 347, 770–772 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Fahnestock, M. L. et al. The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. Immunity 3, 583–590 (1995). This study and references 82 and 83 describe the first identification of an HCMV-encoded MHC-I homologue that was subsequently shown to inhibit NK cell activation (Reyburn et al., 1997).

    Article  CAS  Google Scholar 

  85. Chapman, T. L., Heikeman, A. P. & Bjorkman, P. J. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11, 603–613 (1999).

    Article  CAS  Google Scholar 

  86. Prod’homme, V. et al. The human cytomegalovirus MHC class I homolog UL18 inhibits LIR-1+but activates LIR-1- NK cells. J. Immunol. 178, 4473–4481 (2007).

    Article  PubMed  Google Scholar 

  87. Reyburn, H. T. et al. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386, 514–517 (1997). This is the first description of an HCMV-encoded immunoevasin that subverts NK cell function.

    Article  CAS  Google Scholar 

  88. Leong, C. C. et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog. J. Exp. Med. 187, 1681–1687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, Z. & Bjorkman, P. J. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc. Natl Acad. Sci. USA 105, 10095–10100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, Y. et al. Human cytomegalovirus UL18 utilizes US6 for evading the NK and T-cell responses. PLoS Pathog. 4, e1000123 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Park, B. et al. The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. J. Immunol. 168, 3464–3469 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Adams, E. J. et al. Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc. Natl Acad. Sci. USA 104, 10128–10133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aguilar, O. A. et al. Modulation of Clr ligand expression and NKR-P1 receptor function during murine cytomegalovirus infection. J. Innate Immun. 7, 584–600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kirkham, C. L. et al. Interferon-dependent induction of Clr-b during mouse cytomegalovirus infection protects bystander cells from natural killer cells via nkr-p1b-mediated inhibition. J. Innate Immun. 9, 343–358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Voigt, S. et al. Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity 26, 617–627 (2007).

    Article  CAS  Google Scholar 

  96. Voigt, S., Sandford, G. R., Ding, L. & Burns, W. H. Identification and characterization of a spliced C-type lectin-like gene encoded by rat cytomegalovirus. J. Virol. 75, 603–611 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  Google Scholar 

  98. Braud, V., Jones, E. Y. & McMichael, A. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur. J. Immunol. 27, 1164–1169 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031 (2000). This study finds that the leader sequence of gpUL40 binds HLA-E and upregulates its surface expression, thereby protecting infected cells from NK cell attack.

    Article  CAS  PubMed  Google Scholar 

  100. Ulbrecht, M. et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J. Immunol. 164, 5019–5022 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Cerboni, C. et al. Synergistic effect of IFN-gamma and human cytomegalovirus protein UL40 in the HLA-E-dependent protection from NK cell-mediated cytotoxicity. Eur. J. Immunol. 31, 2926–2935 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Heatley, S. L. et al. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J. Biol. Chem. 288, 8679–8690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, E. C. et al. UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc. Natl Acad. Sci. USA 99, 7570–7575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hoare, H. L. et al. Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat. Immunol. 7, 256–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Sullivan, L. C. et al. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct alphabeta T cell receptors. J. Biol. Chem. 292, 21149–21158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kleijnen, M. F. et al. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 16, 685–694 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Corbett, A. J., Forbes, C. A., Moro, D. & Scalzo, A. A. Extensive sequence variation exists among isolates of murine cytomegalovirus within members of the m02 family of genes. J. Gen. Virol. 88, 758–769 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Zeleznjak, J. et al. The complex of MCMV proteins and MHC class I evades NK cell control and drives the evolution of virus-specific activating Ly49 receptors. J. Exp. Med. 216, 1809–1827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Orr, M. T., Murphy, W. J. & Lanier, L. L. ‘Unlicensed’ natural killer cells dominate the response to cytomegalovirus infection. Nat. Immunol. 11, 321–327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Slavuljica, I., Krmpotic, A. & Jonjic, S. Manipulation of NKG2D ligands by cytomegaloviruses: impact on innate and adaptive immune response. Front. Immunol. 2, 85 (2011).

    PubMed  PubMed Central  Google Scholar 

  111. Jonjic, S., Babic, M., Polic, B. & Krmpotic, A. Immune evasion of natural killer cells by viruses. Curr. Opin. Immunol. 20, 30–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lanier, L. L. NKG2D Receptor and its ligands in host defense. Cancer Immunol. Res. 3, 575–582 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ashiru, O. et al. NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J. Virol. 83, 12345–12354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chalupny, N. J., Rein-Weston, A., Dosch, S. & Cosman, D. Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem. Biophys. Res. Commun. 346, 175–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Dassa, L. et al. The human cytomegalovirus protein UL148a downregulates the nk cell-activating ligand mica to avoid NK cell attack. J. Virol. 92 (2018).

  116. Seidel, E. et al. Dynamic co-evolution of host and pathogen: HCMV downregulates the prevalent allele MICA *008 to escape elimination by NK cells. Cell Rep. 10, 968–982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dunn, C. et al. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J. Exp. Med. 197, 1427–1439 (2003). Collectively, this study and references 120 and 123 highlight that both HCMV and MCMV have evolved molecules that interfere with surface expression of NKG2D ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lodoen, M. et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197, 1245–1253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Arapovic, J. et al. Differential susceptibility of RAE-1 isoforms to mouse cytomegalovirus. J. Virol. 83, 8198–8207 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhi, L. et al. Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms. Biochemistry 49, 2443–2453 (2010).

    Article  CAS  Google Scholar 

  123. Lenac, T. et al. The herpesviral Fc receptor fcr-1 down-regulates the NKG2D ligands MULT-1 and H60. J. Exp. Med. 203, 1843–1850 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shibuya, A. et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4, 573–581 (1996).

    Article  CAS  Google Scholar 

  125. Bottino, C. et al. Identification of PVR (CD155) and nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16, 533–538 (2004).

    Article  CAS  Google Scholar 

  127. Lenac Rovis, T. et al. Inflammatory monocytes and NK cells play a crucial role in DNAM-1-dependent control of cytomegalovirus infection. J. Exp. Med. 213, 1835–1850 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pignoloni, B. et al. Distinct roles for human cytomegalovirus immediate early proteins IE1 and IE2 in the transcriptional regulation of MICA and PVR/CD155 expression. J. Immunol. 197, 4066–4078 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Prod’homme, V. et al. Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J. Gen. Virol. 91, 2034–2039 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Tomasec, P. et al. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat. Immunol. 6, 181–188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nemcovicova, I., Benedict, C. A. & Zajonc, D. M. Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions. PLOS Pathog. 9, e1003224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith, W. et al. Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host Microbe 13, 324–335 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15, 431–438 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Deuss, F. A., Gully, B. S., Rossjohn, J. & Berry, R. Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J. Biol. Chem. 292, 11413–11422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Deuss, F. A., Watson, G. M., Fu, Z., Rossjohn, J. & Berry, R. Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155. Structure 27, 219–228 e213 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Stengel, K. F. et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc. Natl Acad. Sci. USA 109, 5399–5404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Deuss, F. A. et al. Structural basis for the recognition of nectin-like protein-5 by the human activating immune receptor, DNAM-1. J. Biol. Chem. 294, 12534–12546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Valiante, N. M. & Trinchieri, G. Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes. J. Exp. Med. 178, 1397–1406 (1993).

    Article  CAS  PubMed  Google Scholar 

  139. Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennett, M. & Kumar, V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 151, 60–70 (1993).

    CAS  Google Scholar 

  140. Lee, K. M. et al. 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J. Exp. Med. 199, 1245–1254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zarama, A. et al. Cytomegalovirus m154 hinders CD48 cell-surface expression and promotes viral escape from host natural killer cell control. PLOS Pathog. 10, e1004000 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Romo, N. et al. Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization. J. Leukoc. Biol. 90, 717–726 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Martinez-Vicente, P. et al. Subversion of natural killer cell responses by a cytomegalovirus-encoded soluble CD48 decoy receptor. PLOS Pathog. 15, e1007658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kruse, P. H., Matta, J., Ugolini, S. & Vivier, E. Natural cytotoxicity receptors and their ligands. Immunol. Cell Biol. 92, 221–229 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Arnon, T. I. et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat. Immunol. 6, 515–523 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Charpak-Amikam, Y. et al. Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Sci. Rep. 7, 8661 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Miletic, A., Krmpotic, A. & Jonjic, S. The evolutionary arms race between NK cells and viruses: who gets the short end of the stick? Eur. J. Immunol. 43, 867–877 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Hogarth, P. M. & Pietersz, G. A. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat. Rev. Drug Discov. 11, 311–331 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Ross, S. A. et al. Cytomegalovirus reinfections in healthy seroimmune women. J. Infect. Dis. 201, 386–389 (2010).

    Article  PubMed  Google Scholar 

  150. Furukawa, T., Hornberger, E., Sakuma, S. & Plotkin, S. A. Demonstration of immunoglobulin G receptors induced by human cytomegalovirus. J. Clin. Microbiol. 2, 332–336 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Atalay, R. et al. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. J. Virol. 76, 8596–8608 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cortese, M. et al. Recombinant human cytomegalovirus (HCMV) RL13 binds human immunoglobulin G Fc. PLOS ONE 7, e50166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lilley, B. N., Ploegh, H. L. & Tirabassi, R. S. Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J. Virol. 75, 11218–11221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Corrales-Aguilar, E., Hoffmann, K. & Hengel, H. CMV-encoded Fcgamma receptors: modulators at the interface of innate and adaptive immunity. Semin. Immunopathol. 36, 627–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Sprague, E. R. et al. The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G. J. Virol. 82, 3490–3499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ndjamen, B., Joshi, D. S., Fraser, S. E. & Bjorkman, P. J. Characterization of antibody bipolar bridging mediated by the human cytomegalovirus Fc receptor gp68. J. Virol. 90, 3262–3267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thale, R., Lucin, P., Schneider, K., Eggers, M. & Koszinowski, U. H. Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor. J. Virol. 68, 7757–7765 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Crnkovic-Mertens, I. et al. Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. J. Virol. 72, 1377–1382 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kolb, P. et al. Identification and functional characterization of a novel fc gamma-binding glycoprotein in rhesus cytomegalovirus. J. Virol. 93, e02077–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Abi-Rached, L. & Parham, P. Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J. Exp. Med. 201, 1319–1332 (2005). This study investigates the evolutionary history of KIRs and Ly49 receptors and proposes a model in which the activating receptors evolved more recently from their inhibitory counterparts in response to selective pressure induced by pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Corbett, A. J., Coudert, J. D., Forbes, C. A. & Scalzo, A. A. Functional consequences of natural sequence variation of murine cytomegalovirus m157 for Ly49 receptor specificity and NK cell activation. J. Immunol. 186, 1713–1722 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Berry, R. et al. Targeting of a natural killer cell receptor family by a viral immunoevasin. Nat. Immunol. 14, 699–705 (2013). This study reports the structure of the Ly49H–m157 complex and demonstrates that this immunoevasin targets the membrane proximal stalk region of the receptor.

    Article  CAS  PubMed  Google Scholar 

  163. Dorner, B. G. et al. Coordinate expression of cytokines and chemokines by NK cells during murine cytomegalovirus infection. J. Immunol. 172, 3119–3131 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Desrosiers, M. P. et al. Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat. Genet. 37, 593–599 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pyzik, M. et al. Distinct MHC class I-dependent NK cell-activating receptors control cytomegalovirus infection in different mouse strains. J. Exp. Med. 208, 1105–1117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kielczewska, A. et al. Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J. Exp. Med. 206, 515–523 (2009). This study and references 165 and 166 show that activating Ly49 receptors can recognize infected cells via a novel mechanism that is dependent on certain MHC-I allotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Guma, M. et al. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 107, 3624–3631 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Rolle, A. et al. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J. Clin. Invest. 124, 5305–5316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Voigt, V. et al. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc. Natl Acad. Sci. USA 100, 13483–13488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. French, A. R. et al. Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20, 747–756 (2004).

    Article  CAS  Google Scholar 

  173. McWhorter, A. R. et al. Natural killer cell dependent within-host competition arises during multiple MCMV infection: consequences for viral transmission and evolution. PLOS Pathog. 9, e1003111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vivian, J. P. et al. Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature 479, 401–405 (2011).

    Article  CAS  Google Scholar 

  175. Saunders, P. M. et al. A bird’s eye view of NK cell receptor interactions with their MHC class I ligands. Immunol. Rev. 267, 148–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Cook, M. et al. Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation. Blood 107, 1230–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. van Duin, D. et al. KIR and HLA interactions are associated with control of primary CMV infection in solid organ transplant recipients. Am. J. Transpl. 14, 156–162 (2014).

    Article  CAS  Google Scholar 

  178. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Martin, M. P. et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39, 733–740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ashiru, O. et al. A GPI anchor explains the unique biological features of the common NKG2D-ligand allele MICA*008. Biochem. J. 454, 295–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Mizuki, N. et al. Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behcet disease. Proc. Natl Acad. Sci. USA 94, 1298–1303 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Romphruk, A. V. et al. Diversity of MICA (PERB11.1) and HLA haplotypes in northeastern Thais. Tissue Antigens 58, 83–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Tian, W., Boggs, D. A., Ding, W. Z., Chen, D. F. & Fraser, P. A. MICA genetic polymorphism and linkage disequilibrium with HLA-B in 29 African-American families. Immunogenetics 53, 724–728 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, Y. et al. MICA polymorphism in South American Indians. Immunogenetics 53, 900–906 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. van de Weijer, M. L., Luteijn, R. D. & Wiertz, E. J. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin. Immunol. 27, 125–137 (2015).

    Article  PubMed  CAS  Google Scholar 

  186. De Pelsmaeker, S., Romero, N., Vitale, M. & Favoreel, H. W. Herpesvirus evasion of natural killer cells. J. Virol. 92, e02105–e02117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Matschulla, T. et al. A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Sci. Rep. 7, 2933 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Oldham, M. L., Grigorieff, N. & Chen, J. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 5, e21829 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bennett, E. M., Bennink, J. R., Yewdell, J. W. & Brodsky, F. M. Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression. J. Immunol. 162, 5049–5052 (1999).

    CAS  PubMed  Google Scholar 

  190. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Dougall, W. C., Kurtulus, S., Smyth, M. J. & Anderson, A. C. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol. Rev. 276, 112–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Tanaka, M. et al. The Inhibitory NKR-P1B:Clr-b recognition axis facilitates detection of oncogenic transformation and cancer immunosurveillance. Cancer Res. 78, 3589–3603 (2018).

    CAS  PubMed  Google Scholar 

  193. Cox, J. H., Yewdell, J. W., Eisenlohr, L. C., Johnson, P. R. & Bennink, J. R. Antigen presentation requires transport of MHC class I molecules from the endoplasmic reticulum. Science 247, 715–718 (1990).

    Article  CAS  PubMed  Google Scholar 

  194. Weizman, O. E. et al. Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12. Nat. Immunol. 20, 1004–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lucas, A. & McFadden, G. Secreted immunomodulatory viral proteins as novel biotherapeutics. J. Immunol. 173, 4765–4774 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Altomonte, J. et al. Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther. 16, 266–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Kim, J. S. et al. Human cytomegalovirus UL18 alleviated human NK-mediated swine endothelial cell lysis. Biochem. Biophys. Res. Commun. 315, 144–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Wilkinson, G. W. et al. Human cytomegalovirus: taking the strain. Med. Microbiol. Immunol. 204, 273–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cha, T. A. et al. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 70, 78–83 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cerboni, C. et al. Human cytomegalovirus strain-dependent changes in NK cell recognition of infected fibroblasts. J. Immunol. 164, 4775–4782 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Stanton, R. J. et al. Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J. Clin. Invest. 120, 3191–3208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Murrell, I. et al. Genetic stability of bacterial artificial chromosome-derived human cytomegalovirus during culture in vitro. J. Virol. 90, 3929–3943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Coaquette, A. et al. Mixed cytomegalovirus glycoprotein B genotypes in immunocompromised patients. Clin. Infect. Dis. 39, 155–161 (2004).

    Article  PubMed  Google Scholar 

  204. Cudini, J. et al. Human cytomegalovirus haplotype reconstruction reveals high diversity due to superinfection and evidence of within-host recombination. Proc. Natl Acad. Sci. USA 116, 5693–5698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Smith, C. et al. Coinfection with human cytomegalovirus genetic variants in transplant recipients and its impact on antiviral t cell immune reconstitution. J. Virol. 90, 7497–7507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Suarez, N. M. et al. Human cytomegalovirus genomes sequenced directly from clinical material: variation, multiple-strain infection, recombination and gene loss. J. Infect. Dis. 220, 781–791 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Smith, L. M., McWhorter, A. R., Masters, L. L., Shellam, G. R. & Redwood, A. J. Laboratory strains of murine cytomegalovirus are genetically similar to but phenotypically distinct from wild strains of virus. J. Virol. 82, 6689–6696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Martins, J. P. et al. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science 363, 288–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Reddehase, M. J. & Lemmermann, N. A. W. Mouse model of cytomegalovirus disease and immunotherapy in the immunocompromised host: predictions for medical translation that survived the “test of time”. Viruses 10, E693 (2018).

    Article  PubMed  CAS  Google Scholar 

  210. Petrie, E. J. et al. CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence. J. Exp. Med. 205, 725–735 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Li, P., McDermott, G. & Strong, R. K. Crystal structures of RAE-1beta and its complex with the activating immunoreceptor NKG2D. Immunity 16, 77–86 (2002).

    Article  CAS  Google Scholar 

  212. Li, P. et al. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat. Immunol. 2, 443–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Radaev, S., Rostro, B., Brooks, A. G., Colonna, M. & Sun, P. D. Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15, 1039–1049 (2001).

    Article  CAS  Google Scholar 

  214. Zuo, J. et al. A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D ligand binding. Sci. Signal 10, eaai8904 (2017).

    Article  PubMed  CAS  Google Scholar 

  215. Wang, R. et al. Structural basis of mouse cytomegalovirus m152/gp40 interaction with RAE1gamma reveals a paradigm for MHC/MHC interaction in immune evasion. Proc. Natl Acad. Sci. USA 109, E3578–E3587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Muller, S., Zocher, G., Steinle, A. & Stehle, T. Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasin to diverse NKG2D ligands. PLOS Pathog. 6, e1000723 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Balaji, G. R. et al. Recognition of host Clr-b by the inhibitory NKR-P1B receptor provides a basis for missing-self recognition. Nat. Commun. 9, 4623 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Gao, G. F. et al. Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature 387, 630–634 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Health and Medical Research Council of Australia to R.B. (APP1109901) and M.A.D-E. (GNT1119298), the Deutsche Forschungsgemeinschaft-funded research unit Advanced Concepts in Cellular Immune Control of Cytomegalovirus (FOR 2830) project ‘Solving the m04 paradox: evasion of missing-self recognition and CD8 T cell killing by MAT uORF’ to S.J. (JO 1634/1-1), the grant KK.01.1.1.01.0006, awarded to the Scientific Centre of Excellence for Virus Immunology and Vaccines and co-financed by the European Regional Development Fund, to S.J. and the Australian Research Council to J.R. (FL160100049).

Reviewer information

Nature Reviews Immunology thanks A. Cerwenka and C. Biron for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

R.B. and G.M.W. researched data for the article, R.B. and J.R. substantially contributed to the discussion of the content, R.B., G.M.W., S.J. and M.A.D.-E. wrote the article and R.B. and J.R. were responsible for the review and editing of the article before submission.

Corresponding author

Correspondence to Richard Berry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Paired receptors

Closely related receptors that bind to the same or similar ligands but trigger opposing functional effects (for example, stimulatory versus inhibitory).

V-type immunoglobulin domain

A compact protein module comprising two β-sheets arranged into a β-sandwich fold. 'V' refers to ‘variable’ indicating a subclass of immunoglobulin domains that possess nine β-strands and resemble those located within the variable portion of antibodies.

‘Missing-self’ recognition

A term used to describe how the downregulation of self-molecules, which act as ligands for inhibitory receptors, can trigger natural killer cell activation.

Sec61 complex

A dynamic multiprotein channel that, in eukaryotic cells, is located within the endoplasmic reticulum membrane. It mediates the membrane insertion and translocation of most proteins that reside in the endomembrane system or are destined for secretion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, R., Watson, G.M., Jonjic, S. et al. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat Rev Immunol 20, 113–127 (2020). https://doi.org/10.1038/s41577-019-0225-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0225-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing