Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell–intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii

Abstract

Nod2 belongs to the nucleotide-binding oligomerization domain receptor (NLR) family of proteins, which function as intracellular pathogen sensors in innate immune cells. Nod2 deficiency results in an impaired immune response to bacterial pathogens. However, how this protein promotes host defense against intracellular parasites is unknown. Here we found that Nod2−/− mice had less clearance of Toxoplasma gondii and lower interferon-γ (IFN-γ) production. Reconstitution of T cell–deficient mice with Nod2−/− T cells followed by T. gondii infection demonstrated a T cell–intrinsic defect. Nod2−/− CD4+ T cells had poor helper T cell differentiation, which was associated with impaired production of interleukin 2 (IL-2) and nuclear accumulation of the transcription factor subunit c-Rel. Our data demonstrate a T cell–intrinsic role for Nod2 signaling that is critical for host defense against T. gondii.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nod2 in host defense against T. gondii infection.
Figure 2: Nod2-deficient mice show impaired IFN-γ production despite normal IL-12p40 production.
Figure 3: Nod2-deficient mice show impaired type 1 immune responses during T. gondii infection.
Figure 4: DC function during T. gondii infection is unaffected by the absence of Nod2.
Figure 5: Nod2−/− CD4 cells have an intrinsic defect in IFN-γ production.
Figure 6: Impaired helper T cell differentiation and IL-2 production by Nod2−/− T cells.
Figure 7: Role of Nod2 in T cell–induced colitis.
Figure 8: Nod2 interacts with c-Rel and enhances Il2 transcription.

Similar content being viewed by others

References

  1. Shaw, M.H., Reimer, T., Kim, Y.G. & Nuñez, G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr. Opin. Immunol. 20, 377–382 (2008).

    Article  CAS  Google Scholar 

  2. Chen, G., Shaw, M.H., Kim, Y.G. & Nuñez, G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4, 365–398 (2009).

    Article  CAS  Google Scholar 

  3. Denkers, E.Y., Gazzinelli, R.T., Martin, D. & Sher, A. Emergence of NK1.1+ cells as effectors of IFN-γ dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J. Exp. Med. 178, 1465–1472 (1993).

    Article  CAS  Google Scholar 

  4. Denkers, E.Y. & Gazzinelli, R.T. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin. Microbiol. Rev. 11, 569–588 (1998).

    Article  CAS  Google Scholar 

  5. Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005).

    Article  CAS  Google Scholar 

  6. Mun, H.S. et al. TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. Int. Immunol. 15, 1081–1087 (2003).

    Article  CAS  Google Scholar 

  7. Aliberti, J. et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat. Immunol. 4, 485–490 (2003).

    Article  CAS  Google Scholar 

  8. Park, J.H. et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178, 2380–2386 (2007).

    Article  CAS  Google Scholar 

  9. Sher, A., Oswald, I.P., Hieny, S. & Gazzinelli, R.T. Toxoplasma gondii induces a T-independent IFN-γ response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-α. J. Immunol. 150, 3982–3989 (1993).

    CAS  PubMed  Google Scholar 

  10. Shaw, M.H. et al. Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-γ-dependent IL-10 reactivation. J. Immunol. 176, 7263–7271 (2006).

    Article  CAS  Google Scholar 

  11. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

    Article  CAS  Google Scholar 

  12. Jameson, S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2, 547–556 (2002).

    Article  CAS  Google Scholar 

  13. Morrissey, P.J., Charrier, K., Braddy, S., Liggitt, D. & Watson, J.D. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med. 178, 237–244 (1993).

    Article  CAS  Google Scholar 

  14. Powrie, F., Leach, M.W., Mauze, S., Caddle, L.B. & Coffman, R.L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    Article  CAS  Google Scholar 

  15. Fraser, J.D., Irving, B.A., Crabtree, G.R. & Weiss, A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251, 313–316 (1991).

    Article  CAS  Google Scholar 

  16. Zhou, X.Y. et al. Molecular mechanisms underlying differential contribution of CD28 versus non-CD28 costimulatory molecules to IL-2 promoter activation. J. Immunol. 168, 3847–3854 (2002).

    Article  CAS  Google Scholar 

  17. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).

    Article  CAS  Google Scholar 

  18. Sanchez-Valdepenas, C., Martin, A.G., Ramakrishnan, P., Wallach, D. & Fresno, M. NF-κB-inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c-Rel and regulation of its transactivating activity. J. Immunol. 176, 4666–4674 (2006).

    Article  CAS  Google Scholar 

  19. Yamada, T. et al. Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-κB-inducing kinase. J. Immunol. 165, 804–812 (2000).

    Article  CAS  Google Scholar 

  20. Pan, Q. et al. NF-κB-inducing kinase regulates selected gene expression in the Nod2 signaling pathway. Infect. Immun. 74, 2121–2127 (2006).

    Article  CAS  Google Scholar 

  21. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nat. Immunol. 3, 836–843 (2002).

    Article  CAS  Google Scholar 

  22. Wang, D. et al. A requirement for CARMA1 in TCR-induced NF-κB activation. Nat. Immunol. 3, 830–835 (2002).

    Article  CAS  Google Scholar 

  23. Bradley, P.J. & Sibley, L.D. Rhoptries: an arsenal of secreted virulence factors. Curr. Opin. Microbiol. 10, 582–587 (2007).

    Article  CAS  Google Scholar 

  24. Carruthers, V.B. & Sibley, L.D. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 73, 114–123 (1997).

    CAS  PubMed  Google Scholar 

  25. Malek, T.R. & Bayer, A.L. Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665–674 (2004).

    Article  CAS  Google Scholar 

  26. Bream, J.H. et al. A distal region in the interferon-γ gene is a site of epigenetic remodeling and transcriptional regulation by interleukin-2. J. Biol. Chem. 279, 41249–41257 (2004).

    Article  CAS  Google Scholar 

  27. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nat. Immunol. 9, 1288–1296 (2008).

    Article  CAS  Google Scholar 

  28. D'Souza, W.N., Schluns, K.S., Masopust, D. & Lefrancois, L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T cell responses. J. Immunol. 168, 5566–5572 (2002).

    Article  CAS  Google Scholar 

  29. Liu, Z. et al. B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosal inflammation in chronic experimental colitis. J. Immunol. 167, 1830–1838 (2001).

    Article  CAS  Google Scholar 

  30. Gudmundsdottir, H. & Turka, L.A. A closer look at homeostatic proliferation of CD4+ T cells: costimulatory requirements and role in memory formation. J. Immunol. 167, 3699–3707 (2001).

    Article  CAS  Google Scholar 

  31. Hagen, K.A. et al. A role for CD28 in lymphopenia-induced proliferation of CD4 T cells. J. Immunol. 173, 3909–3915 (2004).

    Article  CAS  Google Scholar 

  32. Yen, M.H., Lepak, N. & Swain, S.L. Induction of CD4 T cell changes in murine AIDS is dependent on costimulation and involves a dysregulation of homeostasis. J. Immunol. 169, 722–731 (2002).

    Article  CAS  Google Scholar 

  33. Civil, A., Rensink, I., Aarden, L.A. & Verweij, C.L. Functional disparity of distinct CD28 response elements toward mitogenic responses. J. Biol. Chem. 274, 34369–34374 (1999).

    Article  CAS  Google Scholar 

  34. Sun, S.C. & Ley, S.C. New insights into NF-κB regulation and function. Trends Immunol. 29, 469–478 (2008).

    Article  CAS  Google Scholar 

  35. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  Google Scholar 

  36. Hara, H. et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 18, 763–775 (2003).

    Article  CAS  Google Scholar 

  37. Kobe, B. & Kajava, A.V. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732 (2001).

    Article  CAS  Google Scholar 

  38. Hall, H.T. et al. RIP2 contributes to Nod signaling but is not essential for T cell proliferation, T helper differentiation or TLR responses. Eur. J. Immunol. 38, 64–72 (2008).

    Article  CAS  Google Scholar 

  39. Nembrini, C., Reissmann, R., Kopf, M. & Marsland, B.J. Effective T-cell immune responses in the absence of the serine/threonine kinase RIP2. Microbes Infect. 10, 522–530 (2008).

    Article  CAS  Google Scholar 

  40. Magalhaes, J.G. et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 181, 7925–7935 (2008).

    Article  CAS  Google Scholar 

  41. Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  Google Scholar 

  42. Moreira, L.O. et al. Modulation of adaptive immunity by different adjuvant-antigen combinations in mice lacking Nod2. Vaccine 26, 5808–5813 (2008).

    Article  CAS  Google Scholar 

  43. Greenwald, R.J., Freeman, G.J. & Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    Article  Google Scholar 

  44. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285 (2009).

    Article  CAS  Google Scholar 

  45. Villegas, E.N., Lieberman, L.A., Carding, S.R. & Hunter, C.A. Susceptibility of interleukin-2-deficient mice to Toxoplasma gondii is associated with a defect in the production of γ interferon. Infect. Immun. 70, 4757–4761 (2002).

    Article  CAS  Google Scholar 

  46. Mason, N.J., Liou, H.C. & Hunter, C.A. T cell-intrinsic expression of c-Rel regulates Th1 cell responses essential for resistance to Toxoplasma gondii. J. Immunol. 172, 3704–3711 (2004).

    Article  CAS  Google Scholar 

  47. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Weiss (University of California, San Francisco) for the pCD28RE/AP-1 luc reporter plasmid; G.Y. Chen for critically reading the manuscript; S. Koonse for assistance with managing mice colonies; the University of Michigan Flow Cytometry and the immunology core facilities for assistance with flow cytometry and enzyme-linked immunosorbent assay (ELISA); and G.S. Yap for discussions. Supported by the US National Institutes of Health (R01 DK61707; and T32-HL007517 to M.H.S.), the Swiss National Science Foundation (T.R.), the University of Michigan Comprehensive Cancer Center (Y.-G.K.), the Spanish Ministerio de Ciencia e Innovacion (SAF2007-61716 to M.F.), European Union (Eicosanox, for M.F.), Comunidad de Madrid (S-SAL-0159/2006 to M.F.) and La Red Temática de Investigación Cooperativa en Enfermedades Cardiovasculares (RD06/0014/1013 to M.F.).

Author information

Authors and Affiliations

Authors

Contributions

M.H.S. developed the concept and designed experiments; C.S.-V. and M.F. designed and did Jurkat and CD28RE–AP-1 assays; T.R., N.W. and Y.-G.K. provided technical support and conceptual advice; M.H.S. and G.N. prepared the manuscript; G.N. directed the research; and all authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Gabriel Nuñez.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, M., Reimer, T., Sánchez-Valdepeñas, C. et al. T cell–intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol 10, 1267–1274 (2009). https://doi.org/10.1038/ni.1816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing