Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong elemental fractionation of Zr–Hf and Nb–Ta across the Pacific Ocean

Abstract

Understanding the circulation of water masses in the world’s oceans is critical to our knowledge of the Earth’s climate system. Trace elements and their isotopes have been explored as tracers for the movement of water masses 1. One type of candidate elements2 are the high-field-strength elements zirconium (Zr), hafnium (Hf), niobium (Nb) and tantalum (Ta). Here we measure the distributions of dissolved Zr, Hf, Nb and Ta along two meridional sections in the Pacific Ocean that extend from 65° to 10° S and from 10° to 50° N. We find that all four elements tend to be depleted in surface water. In the deep oceans, their concentrations rise along our transects from the Southern Ocean to the North Pacific Ocean, and show strong correlations with the concentration of silicate. These results indicate that terrigenous sources are important to the budget of Zr, Hf, Nb and Ta in sea water, compared with hydrothermal input. Unexpectedly, the weight ratios for Zr/Hf fall between 45 and 350 and those for Nb/Ta between 14 and 85 in Pacific sea water, higher than the ratios observed in fresh water, in the silicate Earth or in chondritic meteorites. We conclude that the fractionation of Zr/Hf and Nb/Ta ratios will be useful for tracing water masses in the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sectional distributions of dissolved Zr, Hf, Nb and Ta in the Pacific Ocean along 170° W and 160° W.
Figure 2
Figure 3: Scatter plots of dissolved HFSEs in sea water.
Figure 4: Zr/Hf and Nb/Ta ratios as tracers of water masses.

Similar content being viewed by others

References

  1. SCOR Working Group, GEOTRACES—An international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem. Erde - Geochem. 67, 85–131 (2007).

    Article  Google Scholar 

  2. Orians, K. J. & Merrin, C. L. in Encyclopedia of Ocean Sciences, Vol. 4 (eds Steele, J. H., Thorpe, S. A. & Turekian, K. K.) 2387–2399 (Academic, 2001).

    Book  Google Scholar 

  3. Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).

    Google Scholar 

  4. Nozaki, Y. in Encyclopedia of Ocean Sciences, Vol. 4 (eds Steele, J. H.,Thorpe, S. A. & Turekian, K. K.) 2354–2366 (Academic, 2001).

    Book  Google Scholar 

  5. Bau, M. & Koschinsky, A. Hafnium and neodymium isotopes in seawater and in ferromanganese crusts: The ‘element perspective’. Earth Planet. Sci. Lett. 241, 952–961 (2006).

    Article  Google Scholar 

  6. Bayon, G. et al. The control of weathering processes on riverine and seawater hafnium isotope ratios. Geology 34, 433–436 (2006).

    Article  Google Scholar 

  7. David, K. et al. The Hf isotope composition of global seawater and the evolution of Hf isotopes in the deep Pacific Ocean from Fe–Mn crusts. Chem. Geol. 178, 23–42 (2001).

    Article  Google Scholar 

  8. van de Flierdt, T. et al. Global neodymium–hafnium isotope systematics—revisited. Earth Planet. Sci. Lett. 259, 432–441 (2007).

    Article  Google Scholar 

  9. White, W. M., Patchett, J. & BenOthman, D. Hf isotope ratios of marine sediments and Mn nodules: Evidence for a mantle source of Hf in seawater. Earth Planet. Sci. Lett. 79, 46–54 (1986).

    Article  Google Scholar 

  10. Rickli, J., Frank, M. & Halliday, A. N. The hafnium–neodymium isotopic composition of Atlantic seawater. Earth Planet. Sci. Lett. 280, 118–127 (2009).

    Article  Google Scholar 

  11. Zimmermann, B. et al. The hafnium isotope composition of Pacific Ocean water. Geochim. Cosmochim. Acta 73, 91–101 (2009).

    Article  Google Scholar 

  12. McKelvey, B. A. & Orians, K. J. Dissolved zirconium in the North Pacific Ocean. Geochim. Cosmochim. Acta 57, 3801–3805 (1993).

    Article  Google Scholar 

  13. Firdaus, M. L. et al. Dissolved and labile particulate Zr, Hf, Nb, Ta, Mo and W in the western North Pacific Ocean. J. Oceanogr. 64, 247–257 (2008).

    Article  Google Scholar 

  14. Rickli, J. et al. Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean. Geochim. Cosmochim. Acta 74, 540–557 (2010).

    Article  Google Scholar 

  15. Li, Y-H. A Compendium of Geochemistry (Princeton Univ. Press, 2000).

    Google Scholar 

  16. Rudnick, R. L. & Gao, S. in The Crust (ed. Rudnick, R. L.) 1–64 (Elsevier, 2005).

    Google Scholar 

  17. Prospero, J. M., Uematsu, M. & Savoie, D. L. in Chemical Oceanography, Vol. 10 (eds Riley, J. P., Chester, R. & Duce, R. A.) 187–218 (Academic, 1989).

    Google Scholar 

  18. Massoth, G. et al. Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge. Geochem. Geophys. Geosyst. 8, Q11008 (2007).

    Article  Google Scholar 

  19. German, C. R. et al. Hydrothermal exploration of the Fonualei Rift and Spreading Center and the Northeast Lau Spreading Center. Geochem. Geophys. Geosyst. 7, Q11022 (2006).

    Google Scholar 

  20. Winckler, G., Newton, R., Schlosser, P. & Crone, T. J. Mantle helium reveals Southern Ocean hydrothermal venting. Geophys. Res. Lett. 37, L05601 (2010).

    Article  Google Scholar 

  21. Boyle, E. A., Bergquist, B. A., Kayser, R. A. & Mahowald, N. Iron, manganese, and lead at Hawaii Ocean time-series station ALOHA: Temporal variability and an intermediate water hydrothermal plume. Geochim. Cosmochim. Acta 69, 933–952 (2005).

    Article  Google Scholar 

  22. Godfrey, L. V., White, W. M. & Salters, V. J. M. Dissolved zirconium and hafnium distributions across a shelf break in the northeastern atlantic ocean. Geochim. Cosmochim. Acta 60, 3995–4006 (1996).

    Article  Google Scholar 

  23. Godfrey, L. V. et al. Hafnium and neodymium isotope variations in NE Atlantic seawater. Geochem. Geophys. Geosyst. 10, Q08015 (2009).

    Article  Google Scholar 

  24. Pfänder, J. A., Münker, C., Stracke, A. & Mezger, K. Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of niobium. Earth Planet. Sci. Lett. 254, 158–172 (2007).

    Article  Google Scholar 

  25. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  26. Emery, W. J. in Encyclopedia of Ocean Sciences, Vol. 6 (eds Steele, J. H.,Thorpe, S. A. & Turekian, K. K.) 3179–3187 (Academic, 2001).

    Book  Google Scholar 

  27. McCave, I. N., Carter, L. & Hall, I. R. Glacial–interglacial changes in water mass structure and flow in the SW Pacific Ocean. Quat. Sci. Rev. 27, 1886–1908 (2008).

    Article  Google Scholar 

  28. Godfrey, L. V., Field, M. P. & Sherrell, R. M. Estuarine distributions of Zr, Hf, and Ag in the Hudson River and the implications for their continental and anthropogenic sources to seawater. Geochem. Geophys. Geosyst. 9, Q12007 (2008).

    Article  Google Scholar 

  29. Niu, Y. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Petrol. 45, 2423–2458 (2004).

    Article  Google Scholar 

  30. Nebel, O. et al. Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a magma ocean. Geochim. Cosmochim. Acta 74, 4392–4404 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Japan Science Society, the Steel Industry Foundation for the Advancement of Environmental Protection Technology, and the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.L.F. and Y.S. designed the research. M.L.F. carried out the determination of HFSEs. K.N. contributed to sample collection and T.M. determined Mn and Fe. All authors contributed to data interpretation and preparation of the manuscript.

Corresponding author

Correspondence to M. Lutfi Firdaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 956 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firdaus, M., Minami, T., Norisuye, K. et al. Strong elemental fractionation of Zr–Hf and Nb–Ta across the Pacific Ocean. Nature Geosci 4, 227–230 (2011). https://doi.org/10.1038/ngeo1114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing