Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia

Abstract

High hyperdiploid (51–67 chromosomes) acute lymphoblastic leukemia (ALL) is one of the most common childhood malignancies, comprising 30% of all pediatric B cell–precursor ALL. Its characteristic genetic feature is the nonrandom gain of chromosomes X, 4, 6, 10, 14, 17, 18 and 21, with individual trisomies or tetrasomies being seen in over 75% of cases, but the pathogenesis remains poorly understood. We performed whole-genome sequencing (WGS) (n = 16) and/or whole-exome sequencing (WES) (n = 39) of diagnostic and remission samples from 51 cases of high hyperdiploid ALL to further define the genomic landscape of this malignancy. The majority of cases showed involvement of the RTK-RAS pathway and of histone modifiers. No recurrent fusion gene–forming rearrangement was found, and an analysis of mutations on trisomic chromosomes indicated that the chromosomal gains were early events, strengthening the notion that the high hyperdiploid pattern is the main driver event in this common pediatric malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circos plots showing all somatic genetic events in three representative cases.
Figure 2: Mutational signature of high hyperdiploid childhood ALL.
Figure 3: Overview of the mutations and structural events affecting genes involved in the RTK-RAS pathway and histone modifiers.
Figure 4: Mutant allele fraction (MAF) in relation to relative copy number for the trisomic chromosomes in case 11.

Similar content being viewed by others

References

  1. Paulsson, K. & Johansson, B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 48, 637–660 (2009).

    Article  CAS  Google Scholar 

  2. Molenaar, J.J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  CAS  Google Scholar 

  3. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    Article  CAS  Google Scholar 

  4. Biggs, P.J., Warren, W., Venitt, S. & Stratton, M.R. Does a genotoxic carcinogen contribute to human breast cancer? The value of mutational spectra in unravelling the aetiology of cancer. Mutagenesis 8, 275–283 (1993).

    Article  CAS  Google Scholar 

  5. Collins, A.R. Molecular epidemiology in cancer research. Mol. Aspects Med. 19, 359–432 (1998).

    Article  CAS  Google Scholar 

  6. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    Article  CAS  Google Scholar 

  7. Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  Google Scholar 

  8. Thomas, D.D.H., Frey, C.L., Messenger, S.W., August, B.K. & Groblewski, G.E. A role for tumor protein TPD52 phosphorylation in endo-membrane trafficking during cytokinesis. Biochem. Biophys. Res. Commun. 402, 583–587 (2010).

    Article  CAS  Google Scholar 

  9. Barbaric, D., Byth, K., Dalla-Pozza, L. & Byrne, J.A. Expression of tumor protein D52-like genes in childhood leukemia at diagnosis: clinical and sample considerations. Leuk. Res. 30, 1355–1363 (2006).

    Article  CAS  Google Scholar 

  10. Kodani, A., Tonthat, V., Wu, B. & Sütterlin, C. Par6α interacts with the dynactin subunit p150Glued and is a critical regulator of centrosomal protein recruitment. Mol. Biol. Cell 21, 3376–3385 (2010).

    Article  CAS  Google Scholar 

  11. Merkenschlager, M. & Odom, D.T. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152, 1285–1297 (2013).

    Article  CAS  Google Scholar 

  12. Nakahashi, H. et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 3, 1678–1689 (2013).

    Article  CAS  Google Scholar 

  13. Mullighan, C.G. et al. Rearrangement of CRLF2 in B-progenitor– and Down syndrome–associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009).

    Article  CAS  Google Scholar 

  14. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  Google Scholar 

  15. Paulsson, K. et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 47, 26–33 (2008).

    Article  CAS  Google Scholar 

  16. Armstrong, S.A. et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 103, 3544–3546 (2004).

    Article  CAS  Google Scholar 

  17. Tartaglia, M. et al. Genetic evidence for lineage-related and differentiation stage–related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 104, 307–313 (2004).

    Article  CAS  Google Scholar 

  18. Perentesis, J.P. et al. RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia 18, 685–692 (2004).

    Article  CAS  Google Scholar 

  19. Janakiraman, M. et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res. 70, 5901–5911 (2010).

    Article  CAS  Google Scholar 

  20. Mullighan, C.G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  Google Scholar 

  21. Gelsi-Boyer, V. et al. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 8, 299 (2008).

    Article  Google Scholar 

  22. Tyner, J.W. et al. High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood 113, 1749–1755 (2009).

    Article  CAS  Google Scholar 

  23. Zhang, J. et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 118, 3080–3087 (2011).

    Article  CAS  Google Scholar 

  24. Inthal, A. et al. CREBBP HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia 26, 1797–1803 (2012).

    Article  CAS  Google Scholar 

  25. Szczepań ski, T. et al. Precursor-B-ALL with DH-JH gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 15, 1415–1423 (2001).

    Article  Google Scholar 

  26. Bateman, C.M. et al. Evolutionary trajectories of hyperdiploid ALL in monozygotic twins. Leukemia 29, 58–65 (2015).

    Article  CAS  Google Scholar 

  27. Maia, A.T. et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia 17, 2202–2206 (2003).

    Article  CAS  Google Scholar 

  28. Maia, A.T. et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer 40, 38–43 (2004).

    Article  Google Scholar 

  29. Andersson, A. et al. Molecular signatures in childhood acute leukemia and their correlations to expression patterns in normal hematopoietic subpopulations. Proc. Natl. Acad. Sci. USA 102, 19069–19074 (2005).

    Article  CAS  Google Scholar 

  30. Gruszka-Westwood, A.M. et al. Comparative expressed sequence hybridization studies of high-hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 41, 191–202 (2004).

    Article  CAS  Google Scholar 

  31. Ross, M.E. et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102, 2951–2959 (2003).

    Article  CAS  Google Scholar 

  32. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

    Article  CAS  Google Scholar 

  33. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).

  34. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  Google Scholar 

  35. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  Google Scholar 

  36. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  Google Scholar 

  37. Herou, E., Biloglav, A., Johansson, B. & Paulsson, K. Partial 17q gain resulting from isochromosomes, unbalanced translocations and complex rearrangements is associated with gene overexpression, older age and shorter overall survival in high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia 27, 493–496 (2013).

    Article  CAS  Google Scholar 

  38. Paulsson, K. et al. Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 107, 21719–21724 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Society (K.P., grant reference CAN 2013/545; B.J., grant reference CAN 2014/357), the Swedish Childhood Cancer Foundation (K.P., grant reference PROJ12/7050; B.J., grant reference PROJ12/009) and the Swedish Research Council (K.P., grant reference 521-2012-864; B.J., grant reference 521-2011-4090).

Author information

Authors and Affiliations

Authors

Contributions

K.P. performed the whole-genome and exome sequencing analyses. H.L., M.R. and T.F. performed RNA-seq. A.B. and L.O. performed validation experiments. A.C. provided clinical data. G.B., L.F., A.N. and H.S. provided samples and clinical data. K.P. and B.J. conceived the study and wrote the manuscript, which was reviewed and edited by the other co-authors.

Corresponding author

Correspondence to Kajsa Paulsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3, 10 and 12, and Supplementary Note. (PDF 5418 kb)

Supplementary Tables 4–9 and 11

Supplementary Tables 4–9 and 11. (XLSX 154 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulsson, K., Lilljebjörn, H., Biloglav, A. et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet 47, 672–676 (2015). https://doi.org/10.1038/ng.3301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing