Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity

Abstract

The nematode Caenorhabditis elegans is central to research in molecular, cell and developmental biology, but nearly all of this research has been conducted on a single strain of C. elegans. Little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation using high-throughput selective sequencing of a worldwide collection of 200 wild strains and identified 41,188 SNPs. Notably, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of its six chromosomes, each spanning many megabases. Population genetic modeling showed that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps probably occurred in the last few hundred years. These sweeps, which we hypothesize to be a result of human activity, have drastically reshaped the global C. elegans population in the recent past.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global sampling locations of C. elegans strains.
Figure 2: Neighbor-joining tree of 97 C. elegans isotypes.
Figure 3: Chromosomal patterns of sequence polymorphism.
Figure 4: Extensive sharing of large blocks of near-identical haplotypes.
Figure 5: High-frequency extended haplotypes on chromosomes I, IV, V and X.
Figure 6: Modeled effects of selection.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. Félix, M.A. & Braendle, C. The natural history of Caenorhabditis elegans. Curr. Biol. 20, R965–R969 (2010).

    Article  PubMed  Google Scholar 

  2. Riddle, D.L., Blumenthal, T., Meyer, B.J. & Priess, J.R. C. Elegans II, xvii, 1222 (Cold Spring Harbor Laboratory Press, Plainview, New York, USA, 1997).

  3. Barrière, A. & Felix, M.A. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr. Biol. 15, 1176–1184 (2005).

    Article  PubMed  Google Scholar 

  4. Barrière, A. & Felix, M.A. Temporal dynamics and linkage disequilibrium in natural Caenorhabditis elegans populations. Genetics 176, 999–1011 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cutter, A.D. & Payseur, B.A. Selection at linked sites in the partial selfer Caenorhabditis elegans. Mol. Biol. Evol. 20, 665–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Cutter, A.D. Nucleotide polymorphism and linkage disequilibrium in wild populations of the partial selfer Caenorhabditis elegans. Genetics 172, 171–184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cutter, A.D., Baird, S.E. & Charlesworth, D. High nucleotide polymorphism and rapid decay of linkage disequilibrium in wild populations of Caenorhabditis remanei. Genetics 174, 901–913 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cutter, A.D., Felix, M.A., Barriere, A. & Charlesworth, D. Patterns of nucleotide polymorphism distinguish temperate and tropical wild isolates of Caenorhabditis briggsae. Genetics 173, 2021–2031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Denver, D.R., Morris, K. & Thomas, W.K. Phylogenetics in Caenorhabditis elegans: an analysis of divergence and outcrossing. Mol. Biol. Evol. 20, 393–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Dolgin, E.S., Felix, M.A. & Cutter, A.D. Hakuna nematoda: genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity 100, 304–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Graustein, A., Gaspar, J.M., Walters, J.R. & Palopoli, M.F. Levels of DNA polymorphism vary with mating system in the nematode genus Caenorhabditis. Genetics 161, 99–107 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Haber, M. et al. Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Mol. Biol. Evol. 22, 160–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Sivasundar, A. & Hey, J. Population genetics of Caenorhabditis elegans: the paradox of low polymorphism in a widespread species. Genetics 163, 147–157 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sivasundar, A. & Hey, J. Sampling from natural populations with RNAi reveals high outcrossing and population structure in Caenorhabditis elegans. Curr. Biol. 15, 1598–1602 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Rockman, M.V., Skrovanek, S.S. & Kruglyak, L. Selection at linked sites shapes heritable phenotypic variation in C. elegans. Science 330, 372–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Swan, K.A. et al. High-throughput gene mapping in Caenorhabditis elegans. Genome Res. 12, 1100–1105 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rockman, M.V. & Kruglyak, L. Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet. 5, e1000419 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baird, N.A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. McGrath, P.T. et al. Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 61, 692–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hudson, R.R. Two-locus sampling distributions and their application. Genetics 159, 1805–1817 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Falush, D., Stephens, M. & Pritchard, J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cully, D.F. et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Koch, R., van Luenen, H.G., van der Horst, M., Thijssen, K.L. & Plasterk, R.H. Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. Genome Res. 10, 1690–1696 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hillier, L.W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Gusev, A. et al. Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19, 318–326 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sabeti, P.C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Cutter, A.D. Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. Mol. Biol. Evol. 25, 778–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Phillips, P.C. One perfect worm. Trends Genet. 22, 405–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Khan, A., Taylor, S., Ajioka, J.W., Rosenthal, B.M. & Sibley, L.D. Selection at a single locus leads to widespread expansion of Toxoplasma gondii lineages that are virulent in mice. PLoS Genet. 5, e1000404 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiontke, K. et al. Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc. Natl. Acad. Sci. USA 101, 9003–9008 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Roberts, A. et al. Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinformatics 23, i401–i407 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patterson, N. et al. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74, 979–1000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang, H.M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Reddy, K.C., Andersen, E.C., Kruglyak, L. & Kim, D.H. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan, M.W., Mahajan-Miklos, S. & Ausubel, F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96, 715–720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Achaz, G. Frequency spectrum neutrality tests: one for all and all for one. Genetics 183, 249–258 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Achaz, G. Testing for neutrality in samples with sequencing errors. Genetics 179, 1409–1424 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ewing, G. & Hermisson, J. MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics 26, 2064–2065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Denver, D.R., Morris, K., Lynch, M. & Thomas, W.K. High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430, 679–682 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the contributors who provided strains to make this study possible, including M. Ailion (University of Washington), A. Cutter (University of Toronto), D. Denver (Oregon State University), S. Estes (Portland State University), J. Hodgkin (University of Oxford), J. Kammenga (Wageningen University), P. McGrath (Rockefeller University), M. Rockman (New York University) and the Caenorhabditis Genetics Center. We also thank the Waksman Genomics Core Facility and the Lewis-Sigler Institute Microarray Facility for the Illumina sequencing. We also thank P. Andolfatto, M. Rockman, H. Seidel, R. Tanny and the members of the Kruglyak laboratory for helpful discussions and comments on the manuscript. This work was supported by a US National Institutes of Health (NIH) Ruth L. Kirschstein National Research Service Award (E.C.A.), the Merck Fellowship of the Life Science Research Foundation (J.P.G.), a National Science Foundation graduate research fellowship (J.S.B.), a James S. McDonnell Foundation Centennial Fellowship, the Howard Hughes Medical Institute and NIH grants R01-HG004321, R37-MH59520 (L.K.) and P50-GM071508 to the Center for Quantitative Biology at the Lewis-Sigler Institute of Princeton University.

Author information

Authors and Affiliations

Authors

Contributions

E.C.A. and J.P.G. conceived of and carried out the experiments and data analyses. J.A.S. conceived of and carried out the data processing, simulations and analysis. J.R.C. assisted with DNA preparations. R.G. performed the abamectin sensitivity assays. J.S.B. analyzed and plotted the LD data. M.-A.F. provided the unpublished wild strains. L.K. supervised all aspects of the study. The manuscript was written by E.C.A., J.P.G., J.A.S. and L.K.

Corresponding author

Correspondence to Leonid Kruglyak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 2 (PDF 5274 kb)

Supplementary Table 1

C. elegans strains used in our study (XLSX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, E., Gerke, J., Shapiro, J. et al. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 44, 285–290 (2012). https://doi.org/10.1038/ng.1050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing