Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of heartburn

Abstract

Heartburn is a typical symptom of GERD. The spectrum of diseases associated with GERD includes reflux esophagitis, Barrett's esophagus and nonerosive reflux disease (NERD). Although acid reflux is the classic cause of heartburn in patients with erosive esophagitis, the relationship between acid and heartburn is far from clear, especially in patients with NERD. Strong evidence exists that weakly acidic reflux and/or non-acid-related events have a significant role in the generation of heartburn. In addition to the role of nonacidic refluxate components, activation of mechanoreceptors and chemoreceptors, and a possible role for central and peripheral sensitization, has been described. Although patients with erosive esophagitis respond well to acid-suppressive therapy, the same does not hold true for those with NERD. NERD represents a major clinical problem, and its management remains a challenge. Discussion of NERD focuses on the mechanisms that cause chest pain in this subgroup of patients. Improved understanding of the pathogenesis underlying heartburn in patients with GERD, in particular those with NERD, will shape our understanding of this condition. Such understanding will serve as a platform for further research and allow additional therapies to be developed for this increasingly encountered clinical condition.

Key Points

  • Heartburn is a typical symptom of GERD; the spectrum of diseases associated with GERD includes reflux esophagitis, Barrett's esophagus and nonerosive reflux disease (NERD)

  • Several mechanisms are postulated to underlie heartburn: acid reflux, weakly acidic reflux, bile reflux, mechanical stimulation of the esophagus, esophageal hyperalgesia and psychological comorbidity

  • Technological advances—prolonged esophageal pH monitoring, ambulatory multiple-channel intraluminal impedance monitoring, and bilirubin-absorbance monitoring—mean that a precise evaluation of the nature of the refluxate is now possible and that the timing of symptoms reported by patients can be correlated with objective evidence of reflux

  • Expanding knowledge of the pathophysiology of heartburn in patients with GERD, in particular those with NERD, will shape our understanding of heartburn, serve as a platform for further research and allow additional therapeutic options to be developed for this increasingly common clinical entity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the mechanisms and pathways involved in the generation of heartburn.
Figure 2: Transmission electron micrographs of rabbit esophageal mucosa.
Figure 3: Presence of esophageal exposure to acid and DGER in GERD subgroups.
Figure 4: A heartburn episode without acid reflux that is associated with a sustained esophageal contraction.

Similar content being viewed by others

References

  1. Vakil N et al. Global Consensus Group. (2006) The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol 101: 1900–1920

    Article  Google Scholar 

  2. Fass R and Tougas G (2002) Functional heartburn: the stimulus, the pain and the brain. Gut 51: 885–892

    Article  CAS  Google Scholar 

  3. Fass R et al. (2001) Nonerosive reflux disease. Current concepts and dilemmas. Am J Gastroenterol 96: 303–314

    CAS  PubMed  Google Scholar 

  4. Kahrilas PJ (2003) Clinical vignette: refractory heartburn. Gastroenterology 124: 1941–1945

    Article  Google Scholar 

  5. Silny J (1991) Intraluminal multiple electrical impedance procedure for measurement of gastrointestinal motility. J Gastrointest Motil 3: 151–162

    Article  Google Scholar 

  6. Bredenoord AJ et al. (2005) Reproducibility of multichannel intraluminal electrical impedance monitoring of gastroesophageal reflux. Am J Gastroenterol 100: 265–269

    Article  Google Scholar 

  7. Bechi P et al. (1993) Long term ambulatory enterogastric reflux monitoring. Validation of a new fiberoptic technique. Dig Dis Sci 38: 1297–1306

    Article  CAS  Google Scholar 

  8. Sifrim D et al. (2001) Composition of the postprandial refluxate in patients with gastroesophageal reflux disease. Am J Gastroenterol 96: 647–655

    Article  CAS  Google Scholar 

  9. Sifrim D et al. (2001) Acid, nonacid, and gas reflux in patients with gastroesophageal reflux disease during ambulatory 24-hr pH–impedance recordings. Gastroenterology 120: 1588–1598

    Article  CAS  Google Scholar 

  10. Smith JL et al. (1989) Sensitivity of the esophageal mucosa to pH in gastroesophageal reflux disease. Gastroenterology 96: 683–689

    Article  CAS  Google Scholar 

  11. Carlsson R et al. (1998) The usefulness of a structured questionnaire in the assessment of symptomatic gastroesophageal reflux disease. Scand J Gastroenterol 33: 1023–1029

    Article  CAS  Google Scholar 

  12. Holzer P (2003) Acid-sensitive ion channels in gastrointestinal function. Current Opin Pharmacol 3: 618–625

    Article  CAS  Google Scholar 

  13. Tominaga M et al. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543

    Article  CAS  Google Scholar 

  14. Caterina MJ and Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24: 487–517

    Article  CAS  Google Scholar 

  15. Hwang SW and Oh U (2002) Hot channels in airways: pharmacology of the vanilloid receptor. Curr Opin Pharmacol 2: 235–242

    Article  CAS  Google Scholar 

  16. Trevisani M et al. (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5: 546–551

    Article  CAS  Google Scholar 

  17. Matthews PJ et al. (2004) Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur J Gastroenterol Hepatol 16: 897–902

    Article  CAS  Google Scholar 

  18. Abdel-Salam Omar ME et al. (1999) Capsaicin sensitive afferent sensory nerves in modulating gastric mucosal defense against noxious agents. J Physiol (Paris) 93: 443–454

    Article  Google Scholar 

  19. Kindt S et al. (2006) Influence of intra-esophageal capsaicin on heartburn induction and desensitization in man [abstract]. Gastroenterology 130 (Suppl 2): A392

    Google Scholar 

  20. Orlando RC (1998) Esophageal mucosal resistance. Aliment Pharmacol Ther 12: 191–197

    Article  CAS  Google Scholar 

  21. Hopwood D et al. (1979) Electron microscopic changes in human esophageal epithelium in esophagitis. J Pathol 129: 161–167

    Article  CAS  Google Scholar 

  22. Orlando RC (2006) Current understanding of the mechanisms of gastro-oesophageal reflux disease. Drugs 66 (Suppl 1): 1–5

    Article  CAS  Google Scholar 

  23. Villanacci V et al. (2001) Dilated intercellular spaces as markers of reflux disease: histology, semiquantitative scroe and morphometry upon light microscopy. Digestion 64: 1–8

    Article  CAS  Google Scholar 

  24. Orlando RC et al. (1981) Pathophysiology of acute acid injury in rabbit esophageal epithelium. J Clin Invest 68: 286–293

    Article  CAS  Google Scholar 

  25. Tobey NA et al. (1997) HCl-induced cell edema in primary cultured rabbit esophageal epithelium. Gastroenterology 112: 847–854

    Article  CAS  Google Scholar 

  26. Farre R et al. (2007) Critical role of stress in increased esophageal mucosal permeability and dilated intercellular spaces. Gut 56: 1191–1197

    Article  CAS  Google Scholar 

  27. Tobey NA et al. (2004) Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am J Gastroenterol 99: 13–22

    Article  CAS  Google Scholar 

  28. Tobey NA et al. (1996) Dilated intercellular spaces: a morphological feature of acid reflux-damaged human esophageal epithelium. Gastroenterology 111: 1200–1205

    Article  CAS  Google Scholar 

  29. Calabrese C et al. (2003) Dilated intercellular spaces as a marker of oesophageal damage: comparative results in gastro-oesophageal reflux disease with or without bile reflux. Aliment Pharmacol Ther 18: 525–532

    Article  CAS  Google Scholar 

  30. Barlow WJ and Orlando RC (2005) The pathogenesis of heartburn in nonerosive reflux disease: a unifying hypothesis. Gastroenterology 128: 771–778

    Article  Google Scholar 

  31. Calabrese C et al. (2002) Omeprazole and ultrastructural modications occurring in reflux esophagitis. Gastroenterology 122: 837

    Article  Google Scholar 

  32. Marrero JM et al. (1994) Effect of famotidine on esophageal sensitivity in gastro-esophageal reflux disease. Gut 35: 447–450

    Article  CAS  Google Scholar 

  33. Jung B et al. (2004) Lack of association between esophageal acid sensitivity detected by prolonged pH monitoring and Bernstein testing. Am J Gastroenterol 99: 410–415

    Article  Google Scholar 

  34. Wiener GJ et al. (1988) The symptom index: a clinically important parameter of ambulatory 24-hour esophageal pH monitoring. Am J Gastroenterol 83: 358–361

    CAS  PubMed  Google Scholar 

  35. Hewson EG et al. (1989) Acid perfusion test: does it have a role in the assessment of non cardiac chest pain? Gut 30: 305–310

    Article  CAS  Google Scholar 

  36. Koek GH et al. (2001) The role of acid and duodenal gastroesophageal reflux in symptomatic GERD. Am J Gastroenterol 96: 2033–2040

    Article  CAS  Google Scholar 

  37. Weusten BL et al. (1995) Symptom perception in gastroesophageal reflux disease is dependent on spatiotemporal reflux characteristics. Gastroenterology 108: 1739–1744

    Article  CAS  Google Scholar 

  38. Cicala M et al. (2003) Intraoesophageal distribution and perception of acid reflux in patients with non-erosive gastro-oesophageal reflux disease. Aliment Pharmacol Ther 18: 605–613

    Article  CAS  Google Scholar 

  39. Johnson LF and De Meester TR (1986) Development of the 24-hour intraesophageal pH monitoring composite scoring system. J Clin Gastroenterol 1: 747–767

    Google Scholar 

  40. Emerenziani S et al. (2005) Gastric fullness, physical activity, and proximal extent of gastroesophageal reflux. Am J Gastroenterol 100: 1251–1256

    Article  Google Scholar 

  41. Schenk BE et al. (1997) Omeprazole as a diagnostic tool in gastroesophageal reflux disease. Am J Gastroenterol 92: 1997–2000

    CAS  PubMed  Google Scholar 

  42. Smout AJ (1997) Endoscopy-negative acid reflux disease. Aliment Pharmacol Ther 11 (Suppl 2): 81–85

    Google Scholar 

  43. Martinez SD et al. (2003) Non erosive reflux disease (NERD)—acid reflux and symptom patterns. Aliment Pharmacol Ther 17: 537–545

    Article  CAS  Google Scholar 

  44. Bredenoord AJ et al. (2006) Determinants of perception of heartburn and regurgitation. Gut 55: 313–318

    Article  CAS  Google Scholar 

  45. Vela MF et al. (2001) Simultaneous intraesophageal impedance and pH measurement of acid and nonacid gastroesophageal reflux: effect of omeprazole. Gastroenterology 120: 1599–1606

    Article  CAS  Google Scholar 

  46. Mainie I et al. (2006) Acid and non-acid reflux in patients with persistent symptoms despite acid suppressive therapy: a multicentre study using combined ambulatory impedance–pH monitoring. Gut 55: 1398–1402

    Article  CAS  Google Scholar 

  47. Zerbib F et al. (2006) Esophageal pH impedance monitoring and symptom analysis in GERD: a study in patients off and on therapy. Am J Gastroenterol 101: 1956–1963

    Article  Google Scholar 

  48. Stipa F et al. (1997) Assessment of non-acidic esophageal reflux: comparison between long-term reflux aspiration test and fiberoptic bilirubin monitoring. Dis Esophagus 10: 24–28

    Article  CAS  Google Scholar 

  49. Vaezi MF and Richter JE (1996) Role of acid and duodenogastroesophageal reflux disease. Gastroenterology 111: 1992–1999

    Article  Google Scholar 

  50. Tack J et al. (2004) Gastroesophageal reflux disease poorly responsive to single-dose proton pump inhibitors in patients without Barrett's esophagus: acid reflux, bile reflux or both? Am J Gastroenterol 99: 981–988

    Article  CAS  Google Scholar 

  51. Siddiqui A et al. (2005) Esophageal visceral sensitivity to bile salts in patients with functional heartburn and in healthy control subjects. Dig Dis Sci 50: 81–85

    Article  Google Scholar 

  52. Tack J (2006) Review article: the role of bile and pepsin in the pathophysiology and treatment of gastroesophageal reflux disease. Aliment Pharmacol Ther 24 (Suppl): 10–16

    Article  CAS  Google Scholar 

  53. Gelbmann CM (1995) Mast cells and histamine contribute to bile acid stimulated secretion in the mouse colon. J Clin Invest 95: 2831–2839

    Article  CAS  Google Scholar 

  54. Lanas AI et al. (1997) Adaptation of esophageal mucosa to acid- and pepsin-induced damage: role of nitric oxide and epidermal growth factor. Dig Dis Sci 42: 1003–1012

    Article  CAS  Google Scholar 

  55. Tobey NA et al. (2001) The role of pepsin in acid injury to esophageal epithelium. Am J Gastroenterol 96: 3062–3070

    Article  CAS  Google Scholar 

  56. Farre R et al. (2007) Weakly acidic solutions containing pepsin and bile acids can significantly increase esophageal mucosa permeability [abstract]. Gastroenterology 132 (Suppl 2): A274

    Google Scholar 

  57. Hopwood D et al. (1981) Effects of bile acids and hydrogen ions on the fine structure of esophageal epithelium. Gut 22: 306–311

    Article  CAS  Google Scholar 

  58. Fass R et al. (1998) Differential effect of long-term esophageal acid exposure on mechanosensitivity and chemosensitivity in humans. Gastroenterology 115: 1363–1373

    Article  Google Scholar 

  59. Patel S and Rao S (1998) Biomechanical and sensory parameters of the human esophagus at four levels. Am J Physiol Gastrointest Liver Physiol 275: G187–G191

    Article  CAS  Google Scholar 

  60. Mehta AJ et al. (1995) Sensitization to painful distension and abnormal sensory perception in the esophagus. Gastroenterology 108: 311–319

    Article  CAS  Google Scholar 

  61. Peghini PL et al. (1996) Mucosal acid exposure sensitizes a subset of normal subjects to intra-oesophageal balloon distension. Eur J Gastroenterol Hepatol 8: 979–983

    Article  CAS  Google Scholar 

  62. DeVault KR (1997) Acid infusion does not affect intraesophageal balloon distension induced sensory and pain thresholds. Am J Gastroenterol 92: 947–949

    CAS  PubMed  Google Scholar 

  63. Balaban DH et al. (1999) Sustained esophageal contraction: a marker of esophageal chest pain identified by intraluminal ultrasonography. Gastroenterology 116: 29–37

    Article  CAS  Google Scholar 

  64. De Caestecker JS et al. (1992) Site and mechanism of pain perception with esophageal balloon distension and intravenous edrophonium in patients with esophageal chest pain. Gut 33: 580–586

    Article  CAS  Google Scholar 

  65. Rao S et al. (1996) Unexplained chest pain: the hypersensitive, hyperreactive, and poorly compliant esophagus. Ann Intern Med 124: 950–958

    Article  CAS  Google Scholar 

  66. Pehlivanov N et al. (2001) Relationship between esophageal muscle thickness and intraluminal pressure: an ultrasonographic study. Am J Physiol Gastrointest Liver Physiol 280: G1093–G1098

    Article  CAS  Google Scholar 

  67. Pehlivanov N et al. (2001) Sustained esophageal contraction: a motor correlate of heartburn symptom. Am J Physiol Gastrointest Liver Physiol G743–G751

    Article  CAS  Google Scholar 

  68. Sifrim D et al. (2003) Ambulatory continuous monitoring of esophageal shortening in man. Preliminary observations in patients with chest pain [abstract]. Gastroenterology 124 (Suppl 1): A121

    Article  Google Scholar 

  69. Trimble K et al. (1995) Lowered esophageal sensory thresholds in patients with symptomatic but not excess gastro-oesophageal reflux: evidence for a spectrum of visceral sensitivity in GORD. Gut 37: 7–12

    Article  CAS  Google Scholar 

  70. Mayer E and Gebhart GF (1994) Basic and clinical aspects of visceral hyperalgesia. Gastroenterology 107: 271–293

    Article  CAS  Google Scholar 

  71. Aziz Q (2001) Acid sensors in the gut: a taste of things to come. Eur J Gastroenterol Hepatol 13: 885–888

    Article  CAS  Google Scholar 

  72. Sarkar S et al. (2000) Contribution of central sensitization to the development of non cardiac chest pain. Lancet 356: 1154–1159

    Article  CAS  Google Scholar 

  73. Smout A et al. (1992) Cerebral potentials evoked by esophageal distension in patients with non-cardiac chest pain. Gut 33: 298–302

    Article  CAS  Google Scholar 

  74. Aziz Q et al. (1997) Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology 113: 50–59

    Article  CAS  Google Scholar 

  75. Sarkar S (2001) Central neural mechanisms mediating human visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 281: G1196–G1202

    Article  CAS  Google Scholar 

  76. Richter J et al. (1986) Psychologic comparison of patients with nutcracker esophagus and irritable bowel syndrome. Dig Dis Sci 31: 131–138

    Article  CAS  Google Scholar 

  77. Bradley LA et al. (1993) The relationship between stress and symptoms of gastroesophageal reflux: the influence of psychological factors. Am J Gastroenterol 88: 11–19

    CAS  PubMed  Google Scholar 

  78. Naliboff BD et al. (2004) The effect of life stress on symptoms of heartburn. Psych Med 66: 426–434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ang, D., Sifrim, D. & Tack, J. Mechanisms of heartburn. Nat Rev Gastroenterol Hepatol 5, 383–392 (2008). https://doi.org/10.1038/ncpgasthep1160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep1160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing