Article

Topologically protected quantum state transfer in a chiral spin liquid

  • Nature Communications 4, Article number: 1585 (2013)
  • doi:10.1038/ncomms2531
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the current-carrying edge states associated with the quantum Hall and the quantum spin Hall effects to topologically protected quantum memory and quantum logic operations. Here we propose and analyse a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.

  • Purchase article full text and PDF:

    $32

    Buy now

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , & . Quantum computers, factoring, and decoherence. Science 270, 1633–1635 (1995).

  2. 2.

    & . Quantum Computation and Quantum Information Cambridge University Press (2000).

  3. 3.

    . Reliable quantum computers. Proc. Roy. Soc. Lond. A 454, 385–410 (1998).

  4. 4.

    . Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127Ð137 (1998).

  5. 5.

    , , & . Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

  6. 6.

    , , , & . Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

  7. 7.

    et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

  8. 8.

    et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

  9. 9.

    , , , & . Qubit protection in nuclear-spin quantum dot memories. Phys. Rev. Lett. 103, 010502 (2009).

  10. 10.

    et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

  11. 11.

    et al. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249–253 (2010).

  12. 12.

    . Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

  13. 13.

    . Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003).

  14. 14.

    et al. Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011).

  15. 15.

    , & . Mott insulators of ultracold fermionic alkaline earth atoms: underconstrained magnetism and chiral spin liquid. Phys. Rev. Lett. 103, 135301 (2009).

  16. 16.

    , , & . Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004).

  17. 17.

    & . Exact chiral spin liquid with non-abelian anyons. Phys. Rev. Lett. 99, 247203 (2007).

  18. 18.

    et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

  19. 19.

    & . Propagation of quantum information through a spin system. Phys. Rev. A 69, 052315 (2004).

  20. 20.

    , , & . Photon storage in Λ-type optically dense atomic media. I. Cavity model. Phys. Rev. A 76, 033804 (2007).

  21. 21.

    , & . Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. Lett. 84, 4232–4235 (2000).

  22. 22.

    , , , & . Light qubit storage and retrieval using macroscopic atomic ensembles. Phys. Rev. A 74, 011802(R) (2006).

  23. 23.

    , & . Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states. Ann. Phys. 324, 1547–1572 (2009).

  24. 24.

    & . Probing neutral majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).

  25. 25.

    & . Dephasing of quantum bits by a quasi-static mesoscopic environment. Quant. Inf. Proc. 5, 503–536 (2006).

  26. 26.

    et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010).

  27. 27.

    . Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

  28. 28.

    & . Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011).

  29. 29.

    , , & . Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010).

  30. 30.

    et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

  31. 31.

    , , & . Tuning the gap of a superconducting flux qubit. Phys. Rev. Lett. 102, 090501 (2009).

  32. 32.

    et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

  33. 33.

    , & . Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

  34. 34.

    & . Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond. Phys. Rev. B 81, 241202(R) (2010).

  35. 35.

    et al. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 105, 210501 (2010).

  36. 36.

    , & . Switchable coupling between nitrogen-vacancy center in diamond and charge qubit. Eur. Phys. J. D 63, 165–168 (2011).

  37. 37.

    et al. Switchable coupling between charge and flux qubits. Phys. Rev. B 76, 024517 (2007).

  38. 38.

    et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011).

  39. 39.

    & . Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319–1326 (1991).

  40. 40.

    et al. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

  41. 41.

    , , , & . Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

  42. 42.

    et al. Electron beam lithography: resolution limits and applications. Appl. Surface Sci. 164, 111–117 (2000).

  43. 43.

    et al. Scalable architecture for a room temperature solid-state quantum information processor. Nat. Commun. 3, 800 (2012).

  44. 44.

    , & . Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

  45. 45.

    , , & . Anyonic braiding in optical lattices. Proc. Natl Acad. Sci. USA 104, 18415 (2007).

  46. 46.

    , & . A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341 (2006).

  47. 47.

    , & . Three-body interactions with cold polar molecules. Nat. Phys. 3, 726 (2007).

  48. 48.

    et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

  49. 49.

    et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commum. 2, 377 (2011).

  50. 50.

    et al. 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

  51. 51.

    . An end to the drought of quantum spin liquids. Science 321, 1306–1307 (2008).

  52. 52.

    . Spin liquids in frustrated magnets. Nature 464, 199 (2010).

  53. 53.

    , , , & . Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

  54. 54.

    . Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Zeitschrift für Physik 47, 1–3 (1928).

  55. 55.

    & . Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007).

Download references

Acknowledgements

We gratefully acknowledge conversations with T. Kitagawa, S. Bennett, P. Maurer, E. Altman, E. Demler, S. Sachdev, M. Freedman and J. Preskill. This work was supported, in part, by the NSF, DOE (FG02-97ER25308), CUA, DARPA, AFOSR MURI, NIST, Lawrence Golub Fellowship, Lee A. DuBridge Foundation, the Sherman Fairchild Foundation, IQIM and the Gordon and Betty Moore Foundation. H.W. was supported by the National Science Foundation through a grant for the Institute for Theoretical Atomic, Molecular and Optical Physics at Harvard University and the Smithsonian Astrophysical Observatory and by a fellowship within the Postdoc Programme of the German Academic Exchange Service (DAAD).

Author information

Author notes

    • N.Y. Yao
    •  & C.R. Laumann

    These authors contributed equally to this work

Affiliations

  1. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

    • N.Y. Yao
    • , C.R. Laumann
    • , H. Weimer
    •  & M.D. Lukin
  2. ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

    • C.R. Laumann
    •  & H. Weimer
  3. Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA

    • A.V. Gorshkov
    •  & L. Jiang
  4. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strase 1, D-85748 Garching, Germany

    • J.I. Cirac
  5. Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria

    • P. Zoller
  6. Institute for Theoretical Physics, Innsbruck University, Innsbruck A-6020, Austria

    • P. Zoller

Authors

  1. Search for N.Y. Yao in:

  2. Search for C.R. Laumann in:

  3. Search for A.V. Gorshkov in:

  4. Search for H. Weimer in:

  5. Search for L. Jiang in:

  6. Search for J.I. Cirac in:

  7. Search for P. Zoller in:

  8. Search for M.D. Lukin in:

Contributions

All authors contributed extensively to all aspects of this work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to N.Y. Yao.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures S1 and S2, Supplementary Discussion and Supplementary Methods

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.