Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interception of teicoplanin oxidation intermediates yields new antimicrobial scaffolds

An Addendum to this article was published on 17 April 2015

Abstract

In the search for new efficacious antibiotics, biosynthetic engineering offers attractive opportunities to introduce minor alterations to antibiotic structures that may overcome resistance. Dbv29, a flavin-containing oxidase, catalyzes the four-electron oxidation of a vancomycin-like glycopeptide to yield A40926. Structural and biochemical examination of Dbv29 now provides insights into residues that govern flavinylation and activity, protein conformation and reaction mechanism. In particular, the serendipitous discovery of a reaction intermediate in the crystal structure led us to identify an unexpected opportunity to intercept the normal enzyme mechanism at two different points to create new teicoplanin analogs. Using this method, we synthesized families of antibiotic analogs with amidated and aminated lipid chains, some of which showed marked potency and efficacy against multidrug resistant pathogens. This method offers a new strategy for the development of chemical diversity to combat antibacterial resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The structure of Dbv29 and its enzymatic mechanism.
Figure 3: Intermediate trapping strategies to probe the catalytic mechanism.
Figure 4: Variations in acyl chain length regulate the resultant glycopeptide analog.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Murray, B.E. Vancomycin-resistant enterococcal infections. N. Engl. J. Med. 342, 710–721 (2000).

    Article  CAS  Google Scholar 

  2. Rice, L.B. Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control 34, S11–S19 (2006).

    Article  Google Scholar 

  3. Fischbach, M.A. & Walsh, C.T. Antibiotics for energin pathogens. Science 325, 1089–1093 (2009).

    Article  CAS  Google Scholar 

  4. Payne, D.J., Gwynn, M.N., Holmes, D.J. & Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  Google Scholar 

  5. Silver, L.L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55 (2007).

    Article  CAS  Google Scholar 

  6. Donadio, S. & Sosio, M. Biosynthesis of glycopeptides: prospects for improved antibacterials. Curr. Top. Med. Chem. 8, 654–666 (2008).

    Article  CAS  Google Scholar 

  7. Kim, A., Kuti, J.L. & Nicolau, D.P. Review of dalbavancin, a novel semisynthetic lipoglycopeptide. Expert Opin. Investig. Drugs 16, 717–733 (2007).

    Article  CAS  Google Scholar 

  8. Ho, J.Y. et al. Glycopeptide biosynthesis: Dbv21/Orf2 from dbv/tcp gene clusters are N-Ac-Glm teicoplanin pseudoaglycone deacetylases and Orf15 from cep gene cluster is a Glc-1-P thymidyltransferase. J. Am. Chem. Soc. 128, 13694–13695 (2006).

    Article  CAS  Google Scholar 

  9. Li, Y.S. et al. A unique flavin mononucleotide-linked primary alcohol oxidase for glycopeptide A40926 maturation. J. Am. Chem. Soc. 129, 13384–13385 (2007).

    Article  CAS  Google Scholar 

  10. Campbell, R.E., Mosimann, S.C., Rijn, I.D., Tanner, M.E. & Strynadka, N.C. The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation. Biochemistry 39, 7012–7023 (2000).

    Article  CAS  Google Scholar 

  11. Leskovac, V., Trivić, S., Wohlfahrt, G., Kandrac, J. & Pericin, D. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int. J. Biochem. Cell Biol. 37, 731–750 (2005).

    Article  CAS  Google Scholar 

  12. Snook, C.F., Tipton, P. & Beamer, L. Crystal structure of GDP-mannose dehydrogenase: a key enzyme of alginate biosynthesis in P. aeruginosa. Biochemistry 42, 4658–4668 (2003).

    Article  CAS  Google Scholar 

  13. Chan, H.C. et al. Regioselective deacetylation based on teicoplanin-complexed Orf2* crystal structures. Mol. Biosyst. 7, 1224–1231 (2011).

    Article  CAS  Google Scholar 

  14. Li, T.L. et al. Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem. Biol. 11, 107–119 (2004).

    CAS  PubMed  Google Scholar 

  15. Alexeev, I., Sultana, A., Mäntsälä, P., Niemi, J. & Schneider, G. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Proc. Natl. Acad. Sci. USA 104, 6170–6175 (2007).

    Article  CAS  Google Scholar 

  16. Dym, O. & Eisenberg, D. Sequence-structure analysis of FAD-containing proteins. Protein Sci. 10, 1712–1728 (2001).

    Article  CAS  Google Scholar 

  17. Huang, C.H. et al. Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl, 8alpha-N1-histidyl FAD. J. Biol. Chem. 280, 38831–38838 (2005).

    Article  CAS  Google Scholar 

  18. Whittaker, J.W. Free radical catalysis by galactose oxidase. Chem. Rev. 103, 2347–2363 (2003).

    Article  CAS  Google Scholar 

  19. Winkler, A. et al. A concerted mechanism for berberine bridge enzyme. Nat. Chem. Biol. 4, 739–741 (2008).

    Article  CAS  Google Scholar 

  20. Borch, R.F., Bernstein, M.D. & Durstlb, H.D. The cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc. 93, 2897–2904 (1971).

    Article  CAS  Google Scholar 

  21. Koteva, K. et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat. Chem. Biol. 6, 327–329 (2010).

    Article  CAS  Google Scholar 

  22. Higgins, D.L. et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 49, 1127–1134 (2005).

    Article  CAS  Google Scholar 

  23. Bailey, J. & Summers, K.M. Dalbavancin: a new lipoglycopeptide antibiotic. Am. J. Health Syst. Pharm. 65, 599–610 (2008).

    Article  CAS  Google Scholar 

  24. Linden, P.K. Vancomycin resistance: are there better glycopeptides coming? Expert Rev. Anti Infect. Ther. 6, 917–928 (2008).

    Article  CAS  Google Scholar 

  25. Roecker, A.M. & Pope, S.D. Dalbavancin: a lipoglycopeptide antibacterial for Gram-positive infections. Expert Opin. Pharmacother. 9, 1745–1754 (2008).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. in Methods in enzymology, macromolecular crystallography, part A Vol. 276 (eds. Carter, C.W. Jr & Sweet, R.M.) 307–326 (Academic Press, 1997).

  27. Kantardjieff, K.A. & Rupp, B. Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci. 12, 1865–1871 (2003).

    Article  CAS  Google Scholar 

  28. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  29. McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 54, 905–921 (1998).

    Article  Google Scholar 

  31. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  32. Schuck, P. Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Council of Taiwan (grants 96-2628-B-001-026-MY3 and 98-2311-B-001-014-MY3 to T.-L.L.) and Academia Sinica intramural funding. X-ray diffraction was carried out at the Protein Crystallography Facility at the National Synchrotron Radiation Research Center, supported by the National Research Program for Genomic Medicine and the National Science Council of Taiwan. We thank C.-Y. Wu (Academia Sinica) for providing 5-azide pentylamine.

Author information

Authors and Affiliations

Authors

Contributions

T.-L.L. designed research; Y.-C.L. solved the structures; H.-C.C. and C.-C.C. helped refinement; Y.-S.L., S.-Y.L., C.-J.H., Y.-T.H. and G.-H.C. performed biochemical experiments; Y.-H.C. and Y.-C.L. performed analytical ultracentrifuge analysis; L.-J.H. performed animal tests. T.-L.L. and M.-D.T. provided supervision; T.-L.L. and M.-D.T. wrote the paper.

Corresponding author

Correspondence to Tsung-Lin Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–19 and Supplementary Tables 1–4 (PDF 6641 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YC., Li, YS., Lyu, SY. et al. Interception of teicoplanin oxidation intermediates yields new antimicrobial scaffolds. Nat Chem Biol 7, 304–309 (2011). https://doi.org/10.1038/nchembio.556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing