Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis for the unusual ring reconstruction in fungal meroterpenoid biogenesis

Abstract

Trt14 from Aspergillus terreus is involved in unusual skeletal reconstruction during the biosynthesis of the fungal meroterpenoid terretonin. Detailed in vitro characterization revealed that this novel multifunctional enzyme catalyzes not only the D-ring expansion via intramolecular methoxy rearrangement, but also the hydrolysis of the expanded D-ring. The X-ray crystal structures of Trt14, in complex with substrate or product, and two Trt14 homologs, AusH and PrhC from Aspergillus nidulans and Penicillium brasilianum, respectively, indicated similar overall structures to those of the NTF2-like superfamily of enzymes, despite lacking sequence and functional similarities. Moreover, we gained structural insight into the mechanism of the Trt14-catalyzed ring reconstruction from the in-crystal enzyme reaction and site-directed mutagenesis to show that this reaction involves sequential ester bond cleavage and formation. Structural comparison of Trt14 and its homologs suggests that the enzymes in this new superfamily employ similar acid–base chemistry to diversify the molecular architecture of fungal meroterpenoids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of terretonin.
Figure 2: In vitro Trt14 enzyme reactions.
Figure 3: Comparison of the overall structures and the active sites of Trt14, AusH, and PrhC.
Figure 4: Comparison of the active site structures of Trt14 with different ligands.
Figure 5: In vitro enzyme reactions of the wild-type and mutants of Trt14.
Figure 6: Proposed mechanism for the Trt14-catalyzed D-ring expansion.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Geris, R. & Simpson, T.J. Meroterpenoids produced by fungi. Nat. Prod. Rep. 26, 1063–1094 (2009).

    Article  CAS  Google Scholar 

  2. Matsuda, Y. & Abe, I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 33, 26–53 (2016).

    Article  CAS  Google Scholar 

  3. Sintchak, M.D. et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 85, 921–930 (1996).

    Article  Google Scholar 

  4. McCowen, M.C., Callender, M.E. & Lawlis, J.F. Fumagillin (H-3), a new antibiotic with amebicidal properties. Science 113, 202–203 (1951).

    Article  CAS  Google Scholar 

  5. Tomoda, H. et al. Relative and Absolute stereochemistry of pyripyropene A, a potent, bioavailable inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). J. Am. Chem. Soc. 116, 12097–12098 (1994).

    Article  CAS  Google Scholar 

  6. Minagawa, N. et al. An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei. Mol. Biochem. Parasitol. 81, 127–136 (1996).

    Article  CAS  Google Scholar 

  7. Lo, H.C. et al. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J. Am. Chem. Soc. 134, 4709–4720 (2012).

    Article  CAS  Google Scholar 

  8. Matsuda, Y., Awakawa, T., Wakimoto, T. & Abe, I. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis. J. Am. Chem. Soc. 135, 10962–10965 (2013).

    Article  CAS  Google Scholar 

  9. Guo, C.-J. et al. Molecular genetic characterization of a cluster in A. terreus for biosynthesis of the meroterpenoid terretonin. Org. Lett. 14, 5684–5687 (2012).

    Article  CAS  Google Scholar 

  10. Matsuda, Y., Iwabuchi, T., Wakimoto, T., Awakawa, T. & Abe, I. Uncovering the unusual D-ring construction in terretonin biosynthesis by collaboration of a multifunctional cytochrome P450 and a unique isomerase. J. Am. Chem. Soc. 137, 3393–3401 (2015).

    Article  CAS  Google Scholar 

  11. Matsuda, Y., Awakawa, T. & Abe, I. Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron 69, 8199–8204 (2013).

    Article  CAS  Google Scholar 

  12. Matsuda, Y., Wakimoto, T., Mori, T., Awakawa, T. & Abe, I. Complete biosynthetic pathway of anditomin: nature's sophisticated synthetic route to a complex fungal meroterpenoid. J. Am. Chem. Soc. 136, 15326–15336 (2014).

    Article  CAS  Google Scholar 

  13. Matsuda, Y. et al. Discovery of key dioxygenases that diverged the paraherquonin and acetoxydehydroaustin pathways in Penicillium brasilianum. J. Am. Chem. Soc. 138, 12671–12677 (2016).

    Article  CAS  Google Scholar 

  14. Matsuda, Y., Awakawa, T., Mori, T. & Abe, I. Unusual chemistries in fungal meroterpenoid biosynthesis. Curr. Opin. Chem. Biol. 31, 1–7 (2016).

    Article  CAS  Google Scholar 

  15. Fukuda, T., Kurihara, Y., Kanamoto, A. & Tomoda, H. Terretonin G, a new sesterterpenoid antibiotic from marine-derived Aspergillus sp. OPMF00272. J. Antibiot. (Tokyo) 67, 593–595 (2014).

    Article  CAS  Google Scholar 

  16. Eberhardt, R.Y. et al. Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics 14, 327 (2013).

    Article  Google Scholar 

  17. Murzin, A.G. Structural classification of proteins: new superfamilies. Curr. Opin. Struct. Biol. 6, 386–394 (1996).

    Article  CAS  Google Scholar 

  18. Arand, M. et al. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J. 22, 2583–2592 (2003).

    Article  CAS  Google Scholar 

  19. Johansson, P. et al. Structure of an atypical epoxide hydrolase from Mycobacterium tuberculosis gives insights into its function. J. Mol. Biol. 351, 1048–1056 (2005).

    Article  CAS  Google Scholar 

  20. Lundqvist, T. et al. Crystal structure of scytalone dehydratase—a disease determinant of the rice pathogen, Magnaporthe grisea. Structure 2, 937–944 (1994).

    Article  CAS  Google Scholar 

  21. Sultana, A. et al. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation. EMBO J. 23, 1911–1921 (2004).

    Article  CAS  Google Scholar 

  22. Cho, H.S. et al. Crystal structure of delta(5)-3-ketosteroid isomerase from Pseudomonas testosteroni in complex with equilenin settles the correct hydrogen bonding scheme for transition state stabilization. J. Biol. Chem. 274, 32863–32868 (1999).

    Article  CAS  Google Scholar 

  23. Hasegawa, H. & Holm, L. Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol. 19, 341–348 (2009).

    Article  CAS  Google Scholar 

  24. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  25. Minami, A. et al. Allosteric regulation of epoxide opening cascades by a pair of epoxide hydrolases in monensin biosynthesis. ACS Chem. Biol. 9, 562–569 (2014).

    Article  CAS  Google Scholar 

  26. Hotta, K. et al. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis. Nature 483, 355–358 (2012).

    Article  CAS  Google Scholar 

  27. Minami, A. et al. Enzymatic epoxide-opening cascades catalyzed by a pair of epoxide hydrolases in the ionophore polyether biosynthesis. Org. Lett. 13, 1638–1641 (2011).

    Article  CAS  Google Scholar 

  28. Rice, L.M., Earnest, T.N. & Brunger, A.T. Single-wavelength anomalous diffraction phasing revisited. Acta Crystallogr. D Biol. Crystallogr. 56, 1413–1420 (2000).

    Article  CAS  Google Scholar 

  29. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  30. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    Article  CAS  Google Scholar 

  31. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  32. Terwilliger, T.C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    Article  CAS  Google Scholar 

  33. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  34. Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  35. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Nakamura (The University of Tokyo) for critical reading of the manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (JSPS KAKENHI Grant Number JP15H01836 and JP16H06443 to I.A.). The synchrotron radiation experiments were performed at the BL41XU of SPring-8, BL-17A, NE3A, and NW12A of the Photon Factory with proposal No. 2015B2031 and 2015G530, respectively.

Author information

Authors and Affiliations

Authors

Contributions

T.M. and I.A. designed the experiments. T.M. expressed, purified, crystallized, and solved the structure of the protein, and performed in vitro experiments. T.I. designed constructs and cloned, expressed, and purified protein, and performed in vivo experiments. S.H. determined the structure of compounds. H.W. expressed, and purified, and crystallized protein. T.M., Y.M., and I.A. analyzed the data. T.M. and I.A. wrote the paper.

Corresponding author

Correspondence to Ikuro Abe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–12. (PDF 10866 kb)

Supplementary Note 1

Characterization of Chemical Compounds. (PDF 10989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, T., Iwabuchi, T., Hoshino, S. et al. Molecular basis for the unusual ring reconstruction in fungal meroterpenoid biogenesis. Nat Chem Biol 13, 1066–1073 (2017). https://doi.org/10.1038/nchembio.2443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing