Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Compounds that select against the tetracycline-resistance efflux pump

Abstract

We developed a competition-based screening strategy to identify compounds that invert the selective advantage of antibiotic resistance. Using our assay, we screened over 19,000 compounds for the ability to select against the TetA tetracycline-resistance efflux pump in Escherichia coli and identified two hits, β-thujaplicin and disulfiram. Treating a tetracycline-resistant population with β-thujaplicin selects for loss of the resistance gene, enabling an effective second-phase treatment with doxycycline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A high-throughput diffusion-based screen identifies compounds that select against tetracycline resistance.
Figure 2: β-Thujaplicin and disulfiram select for loss of tetracycline resistance.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

NCBI Reference Sequence

References

  1. World Health Organization. Antimicrobial Resistance: Global Report on Surveillance (World Health Organization, 2014).

  2. Andersson, D.I. & Hughes, D. Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Lenski, R.E., Simpson, S.C. & Nguyen, T.T. J. Bacteriol. 176, 3140–3147 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baym, M., Stone, L.K. & Kishony, R. Science 351, aad3292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chait, R., Craney, A. & Kishony, R. Nature 446, 668–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Palmer, A.C., Angelino, E. & Kishony, R. Nat. Chem. Biol. 6, 105–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chait, R., Palmer, A.C., Yelin, I. & Kishony, R. Nat. Commun. 7, 10333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Imamovic, L. & Sommer, M.O.A. Sci. Transl. Med. 5, 204ra132 (2013).

    Article  PubMed  Google Scholar 

  9. Szybalski, W. & Bryson, V. J. Bacteriol. 64, 489–499 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lázár, V. et al. Mol. Syst. Biol. 9, 700 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hiramatsu, K. et al. Int. J. Antimicrob. Agents 39, 478–485 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Chao, L. Nature 271, 385–386 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Lukens, A.K. et al. Proc. Natl. Acad. Sci. USA 111, 799–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Gonzales, P.R. et al. Nat. Chem. Biol. 11, 855–861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, S., Lieberman, T.D. & Kishony, R. Proc. Natl. Acad. Sci. USA 111, 14494–14499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bochner, B.R., Huang, H.C., Schieven, G.L. & Ames, B.N. J. Bacteriol. 143, 926–933 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Merlin, T.L., Davis, G.E., Anderson, W.L., Moyzis, R.K. & Griffith, J.K. Antimicrob. Agents Chemother. 33, 1549–1552 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stone, G.W. et al. Antimicrob. Agents Chemother. 48, 477–483 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright, G.D. Chem. Commun. 47, 4055–4061 (2011).

    Article  CAS  Google Scholar 

  20. Chait, R., Shrestha, S., Shah, A.K., Michel, J.-B. & Kishony, R. PLoS One 5, e15179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chopra, I. & Roberts, M. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, H. & Ng, T.B. Life Sci. 65, 849–856 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Ejim, L. et al. Nat. Chem. Biol. 7, 348–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Anderson, A.B. & Gripenberg, J. Acta Chem. Scand. 2, 644–650 (1948).

    Article  CAS  PubMed  Google Scholar 

  25. Phillips, M., Malloy, G., Nedunchezian, D., Lukrec, A. & Howard, R.G. Antimicrob. Agents Chemother. 35, 785–787 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alekshun, M.N. & Levy, S.B. Cell 128, 1037–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Katayama, Y., Ito, T. & Hiramatsu, K. Antimicrob. Agents Chemother. 44, 1549–1555 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer, B.J., Maurer, R. & Ptashne, M. J. Mol. Biol. 139, 163–194 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Lutz, R. & Bujard, H. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baym, M. et al. PLoS One 10, e0128036 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martin, M. EMBnet.Journal 17, 10–11 (2011).

    Article  Google Scholar 

  32. Langmead, B. & Salzberg, S.L. Nat. Meth. 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  33. Li, H. et al. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Albers, C.A. et al. Genome Res. 21, 961–973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keane, T.M., Wong, K. & Adams, D.J. Bioinformatics 29, 389–390 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Rudner, R. Mazitschek, and R. Moellering for helpful insights; J. Horn and J. Marchionna for custom screening plate manufacture and technical advice; D. Flood and S. Rudnicki for technical support in the primary screen; and J. Wang and J. Moore for technical support in the flow cytometry assay. All primary screening was performed at Harvard Medical School ICCB-L Screening Facility. This work was supported in part by National Institute of Allergy and Infectious Diseases grant U54 AI057159, US National Institutes of Health grants R01 GM081617 (to R.K.) and GM086258 (to J.C.), European Research Council FP7 ERC grant 281891 (to R.K.) and a National Science Foundation Graduate Fellowship (to L.K.S.).

Author information

Authors and Affiliations

Authors

Contributions

L.K.S., J.C., and R.K. designed research; L.K.S. performed experiments and analyzed data; M.B. and R.C. built the imaging setup and M.B. developed the automation; L.K.S. and M.B. performed genomic sequencing; T.D.L. analyzed genomic sequencing data; R.C. contributed the initial plate and assay design; L.K.S. and R.K. wrote the manuscript.

Corresponding author

Correspondence to Roy Kishony.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–14 and Supplementary Tables 1–6. (PDF 24325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stone, L., Baym, M., Lieberman, T. et al. Compounds that select against the tetracycline-resistance efflux pump. Nat Chem Biol 12, 902–904 (2016). https://doi.org/10.1038/nchembio.2176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2176

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology