Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allostery in Ca2+ channel modulation by calcium-binding proteins

Abstract

Distinguishing between allostery and competition among modulating ligands is challenging for large target molecules. Out of practical necessity, inferences are often drawn from in vitro assays on target fragments, but such inferences may belie actual mechanisms. One key example of such ambiguity concerns calcium-binding proteins (CaBPs) that tune signaling molecules regulated by calmodulin (CaM). As CaBPs resemble CaM, CaBPs are believed to competitively replace CaM on targets. Yet, brain CaM expression far surpasses that of CaBPs, raising questions as to whether CaBPs can exert appreciable biological actions. Here, we devise a live-cell, holomolecule approach that reveals an allosteric mechanism for calcium channels whose CaM-mediated inactivation is eliminated by CaBP4. Our strategy is to covalently link CaM and/or CaBP to holochannels, enabling live-cell fluorescence resonance energy transfer assays to resolve a cyclical allosteric binding scheme for CaM and CaBP4 to channels, thus explaining how trace CaBPs prevail. This approach may apply generally for discerning allostery in live cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mechanisms of CaM and CaBP interaction with calcium channels.
Figure 2: CaBP4 modulation and binding of CaV1.3 channels.
Figure 3: Chimeric channels reveal the importance of CaBP sites beyond the IQ domain.
Figure 4: CaBP4 and CaM simultaneously bind CaV1.3 channels.
Figure 5: Only one CaBP4 can bind per CaV1.3 channel.
Figure 6: Mechanism of CaV1.3 channel modulation by modest levels of CaBP4.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Wang, L., Martin, B., Brenneman, R., Luttrell, L.M. & Maudsley, S. Allosteric modulators of G protein–coupled receptors: future therapeutics for complex physiological disorders. J. Pharmacol. Exp. Ther. 331, 340–348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ritter, S.L. & Hall, R.A. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol. 10, 819–830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, Y., Krupa, B., Kang, J.S., Bolshakov, V.Y. & Liu, G. Glycine site of NMDA receptor serves as a spatiotemporal detector of synaptic activity patterns. J. Neurophysiol. 102, 578–589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Alberts, B. et al. Molecular Biology of the Cell 3rd edn., 195–222 (Garland, 1996).

  6. Goodey, N.M. & Benkovic, S.J. Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Grunwald, M.E., Zhong, H., Lai, J. & Yau, K.W. Molecular determinants of the modulation of cyclic nucleotide-activated channels by calmodulin. Proc. Natl. Acad. Sci. USA 96, 13444–13449 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunlap, K. Calcium channels are models of self-control. J. Gen. Physiol. 129, 379–383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peterson, B.Z., DeMaria, C.D., Adelman, J.P. & Yue, D.T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Zühlke, R.D., Pitt, G.S., Deisseroth, K., Tsien, R.W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  PubMed  Google Scholar 

  11. Alseikhan, B.A., DeMaria, C.D., Colecraft, H.M. & Yue, D.T. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc. Natl. Acad. Sci. USA 99, 17185–17190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haeseleer, F. et al. Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J. Biol. Chem. 275, 1247–1260 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Haeseleer, F. et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat. Neurosci. 7, 1079–1087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, P.S. et al. Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells. J. Neurosci. 26, 10677–10689 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui, G. et al. Ca2+-binding proteins tune Ca2+-feedback to Cav1.3 channels in mouse auditory hair cells. J. Physiol. (Lond.) 585, 791–803 (2007).

    Article  CAS  Google Scholar 

  16. Lee, S., Briklin, O., Hiel, H. & Fuchs, P. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken. J. Physiol. (Lond.) 583, 909–922 (2007).

    Article  CAS  Google Scholar 

  17. Lee, A. et al. Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1. Nat. Neurosci. 5, 210–217 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, J. et al. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc. Natl. Acad. Sci. USA 99, 7711–7716 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kasri, N.N. et al. Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J. 23, 312–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, H. et al. Ca2+-binding protein-1 facilitates and forms a postsynaptic complex with Cav1.2 (L-type) Ca2+ channels. J. Neurosci. 24, 4698–4708 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haeseleer, F. & Palczewski, K. Calmodulin and Ca2+-binding proteins (CaBPs): variations on a theme. Adv. Exp. Med. Biol. 514, 303–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Oz, S. et al. Competitive and non-competitive regulation of calcium-dependent inactivation in CaV1.2 L-type Ca2+ channels by calmodulin and Ca2+-binding protein 1. J. Biol. Chem. 288, 12680–12691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Findeisen, F. & Minor, D.L. Jr. Structural basis for the differential effects of CaBP1 and calmodulin on CaV1.2 calcium-dependent inactivation. Structure 18, 1617–1631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ben Johny, M., Yang, P.S., Bazzazi, H.X. & Yue, D.T. Dynamic switching of calmodulin interactions underlies Ca2+ regulation of CaV1.3 channels. Nat. Commun. 4, 1717 (2013).

    Article  PubMed  Google Scholar 

  25. Liu, X., Yang, P.S., Yang, W. & Yue, D.T. Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin. Nature 463, 968–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erickson, M.G., Liang, H., Mori, M.X. & Yue, D.T. FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39, 97–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Findeisen, F., Rumpf, C. & Minor, D.L. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain. J. Mol. Biol. 425, 3217–3234 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. de Leon, M. et al. Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 270, 1502–1506 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, J., Ghosh, S., Nunziato, D.A. & Pitt, G.S. Identification of the components controlling inactivation of voltage-gated Ca2+ channels. Neuron 41, 745–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Dick, I.E. et al. A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451, 830–834 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oz, S., Tsemakhovich, V., Christel, C.J., Lee, A. & Dascal, N. CaBP1 regulates voltage-dependent inactivation and activation of CaV1.2 (L-type) calcium channels. J. Biol. Chem. 286, 13945–13953 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, H., Yu, K., McCoy, K.L. & Lee, A. Molecular mechanism for divergent regulation of Cav1.2 Ca2+ channels by calmodulin and Ca2+-binding protein-1. J. Biol. Chem. 280, 29612–29619 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Lorenzen, A. & Schwabe, V. in Purinergic and Pyrimidinergic Signalling I (eds. Abbracchio, M.P. & Williams, M.) 19–34 (Springer-Verlag, 2001).

  34. Logothetis, D.E., Lupyan, D. & Rosenhouse-Dantsker, A. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J. Physiol. (Lond.) 582, 953–965 (2007).

    Article  CAS  Google Scholar 

  35. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Belgard, T.G. et al. A transcriptomic atlas of mouse neocortical layers. Neuron 71, 605–616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blackshaw, S. et al. Genomic analysis of mouse retinal development. PLoS Biol. 2, E247 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vogel, C. & Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232. 10.1038/nrg3185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chao, S.H., Suzuki, Y., Zysk, J.R. & Cheung, W.Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol. 26, 75–82 (1984).

    CAS  PubMed  Google Scholar 

  41. Erickson, M.G., Alseikhan, B.A., Peterson, B.Z. & Yue, D.T. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 31, 973–985 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Mori, M.X., Vander Kooi, C.W., Leahy, D.J. & Yue, D.T. Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure 16, 607–620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mori, M.X., Erickson, M.G. & Yue, D.T. Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304, 432–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Hill, T.L. Free Energy Transduction in Biology: The Steady-State Kinetic and Thermodynamic Formalism 64 (Academic Press, 1977).

  45. Xu, W. & Lipscombe, D. Neuronal CaV1.3α1 L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Samsó, M. & Wagenknecht, T. Apocalmodulin and Ca2+-calmodulin bind to neighboring locations on the ryanodine receptor. J. Biol. Chem. 277, 1349–1353 (2002).

    Article  PubMed  Google Scholar 

  47. Bosanac, I. et al. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol. Cell 17, 193–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, C., Widjaja, J. & Joseph, S.K. The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J. Biol. Chem. 275, 2305–2311 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Yamada, M. et al. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem. J. 308, 83–88 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gough, N.R. Biochemistry: quantifying interactions. Sci. Signal. 3, ec62 (2010).

    Google Scholar 

  51. Eaves, H.L. & Gao, Y. MOM: maximum oligonucleotide mapping. Bioinformatics 25, 969–970 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Yang for dedicated technical support and other members of the Ca2+ signals lab for valuable comments. H. Bazzazi generously made available the β2a–CaMWT construct. Y. Gao contributed the data analysis showing CaM, CaBP4 and CaBP1 gene expression from human prefrontal cortex. This work is supported by grants from the US National Institutes of Health (NIH) Heart, Lung, and Blood Institute MERIT Award (to D.T.Y.), NIH National Institute on Deafness and Other Communication Disorders (P.S.Y. and P. Fuchs), NIH National Institute of General Medical Sciences (GM08752 to P.S.Y.) and the NIH National Institute of Mental Health (M.B.J.).

Author information

Authors and Affiliations

Authors

Contributions

P.S.Y. created mutant, chimeric and engineered channels. P.S.Y. and M.B.J. performed electrophysiology and FRET experiments and undertook extensive data analysis. M.B.J. performed molecular modeling. D.T.Y. supervised and helped conceive the project. All of the authors refined hypotheses, wrote the paper and created figures.

Corresponding author

Correspondence to David T Yue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 and Supplementary Notes 1 and 2. (PDF 4031 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Johny, M. & Yue, D. Allostery in Ca2+ channel modulation by calcium-binding proteins. Nat Chem Biol 10, 231–238 (2014). https://doi.org/10.1038/nchembio.1436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1436

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing