Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana

Abstract

Hydroxyproline (Hyp) O-arabinosylation is a post-translational modification that is prominent in extracellular glycoproteins in plants. Hyp O-arabinosylation is generally found in these glycoproteins in the form of linear oligoarabinoside chains and has a key role in their function by contributing to conformational stability. However, Hyp O-arabinosyltransferase (HPAT), a key enzyme that catalyzes the transfer of the L-arabinose to the hydroxyl group of Hyp residues, has remained undiscovered. Here, we purified and identified Arabidopsis HPAT as a Golgi-localized transmembrane protein that is structurally similar to the glycosyltransferase GT8 family. Loss-of-function mutations in HPAT-encoding genes cause pleiotropic phenotypes that include enhanced hypocotyl elongation, defects in cell wall thickening, early flowering, early senescence and impaired pollen tube growth. Our results indicate essential roles of Hyp O-arabinosylation in both vegetative and reproductive growth in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and identification of Arabidopsis HPAT.
Figure 2: Phenotypes of loss-of-function mutants of HPAT1, HPAT2 and HPAT3.
Figure 3: Decrease in Hyp O-arabinosylation of EXT3 in hpat mutants.
Figure 4: Decrease in Hyp O-arabinosylation of CLE2 in hpat mutants.

Similar content being viewed by others

References

  1. Lamport, D.T.A. Hydroxyproline-O-glycosidic linkage of the plant cell wall glycoprotein extensin. Nature 216, 1322–1324 (1967).

    Article  CAS  Google Scholar 

  2. Kieliszewski, M.J., Lamport, D.T., Tan, L. & Cannon, M.C. Hydroxyproline-rich glycoproteins: form and function. Annu. Plant Rev. 41, 321–342 (2011).

    CAS  Google Scholar 

  3. Kieliszewski, M.J. & Lamport, D.T. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 5, 157–172 (1994).

    Article  CAS  Google Scholar 

  4. Kieliszewski, M., de Zacks, R., Leykam, J.F. & Lamport, D.T. A repetitive proline-rich protein from the gymnosperm douglas fir is a hydroxyproline-rich glycoprotein. Plant Physiol. 98, 919–926 (1992).

    Article  CAS  Google Scholar 

  5. Ellis, M., Egelund, J., Schultz, C.J. & Bacic, A. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 153, 403–419 (2010).

    Article  CAS  Google Scholar 

  6. Lamport, D.T. & Miller, D.H. Hydroxyproline arabinosides in the plant kingdom. Plant Physiol. 48, 454–456 (1971).

    Article  CAS  Google Scholar 

  7. Showalter, A.M. Structure and function of plant cell wall proteins. Plant Cell 5, 9–23 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Akiyama, Y., Mori, M. & Kato, K. 13C-NMR analysis of hydroxyproline arabinosides from Nicotiana tabacum. Agric. Biol. Chem. 44, 2487–2489 (1980).

    CAS  Google Scholar 

  9. van Holst, G.J. & Varner, J.E. Reinforced polyproline II conformation in a hydroxyproline-rich cell wall glycoprotein from carrot root. Plant Physiol. 74, 247–251 (1984).

    Article  CAS  Google Scholar 

  10. Ohyama, K., Shinohara, H., Ogawa-Ohnishi, M. & Matsubayashi, Y. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat. Chem. Biol. 5, 578–580 (2009).

    Article  CAS  Google Scholar 

  11. Amano, Y., Tsubouchi, H., Shinohara, H., Ogawa, M. & Matsubayashi, Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 18333–18338 (2007).

    Article  CAS  Google Scholar 

  12. Pearce, G., Moura, D.S., Stratmann, J. & Ryan, C.A. Production of multiple plant hormones from a single polyprotein precursor. Nature 411, 817–820 (2001).

    Article  CAS  Google Scholar 

  13. Shinohara, H. & Matsubayashi, Y. Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformation and activity. Plant Cell Physiol. 54, 369–374 (2013).

    Article  CAS  Google Scholar 

  14. Owens, R.J. & Northcote, D.H. The location of arabinosyl:hydroxyproline transferase in the membrane system of potato tissue culture cells. Biochem. J. 195, 661–667 (1981).

    Article  CAS  Google Scholar 

  15. Shpak, E., Leykam, J.F. & Kieliszewski, M.J. Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes. Proc. Natl. Acad. Sci. USA 96, 14736–14741 (1999).

    Article  CAS  Google Scholar 

  16. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  17. Nikolovski, N. et al. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol. 160, 1037–1051 (2012).

    Article  CAS  Google Scholar 

  18. Basu, D. et al. Functional identification of a hydroxyproline-O-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J. Biol. Chem. 288, 10132–10143 (2013).

    Article  CAS  Google Scholar 

  19. Schnabel, E.L. et al. The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol. 157, 328–340 (2011).

    Article  CAS  Google Scholar 

  20. Okamoto, S., Shinohara, H., Mori, T., Matsubayashi, Y. & Kawaguchi, M. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat. Commun. 4, 2191 (2013).

    Article  Google Scholar 

  21. Uemura, T. et al. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65 (2004).

    Article  CAS  Google Scholar 

  22. Singer, T. et al. A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization. PLoS Genet. 2, e144 (2006).

    Article  Google Scholar 

  23. Taylor, L.P. & Hepler, P.K. Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 461–491 (1997).

    Article  CAS  Google Scholar 

  24. Cannon, M.C. et al. Self-assembly of the plant cell wall requires an extensin scaffold. Proc. Natl. Acad. Sci. USA 105, 2226–2231 (2008).

    Article  CAS  Google Scholar 

  25. Stafstrom, J.P. & Staehelin, L.A. The role of carbohydrate in maintaining extensin in an extended conformation. Plant Physiol. 81, 242–246 (1986).

    Article  CAS  Google Scholar 

  26. Ohyama, K., Ogawa, M. & Matsubayashi, Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS–based structure analysis. Plant J. 55, 152–160 (2008).

    Article  CAS  Google Scholar 

  27. Hall, Q. & Cannon, M.C. The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 14, 1161–1172 (2002).

    Article  CAS  Google Scholar 

  28. Okamoto, S. et al. Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol. 50, 67–77 (2009).

    Article  CAS  Google Scholar 

  29. Reid, D.E., Ferguson, B.J. & Gresshoff, P.M. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol. Plant Microbe Interact. 24, 606–618 (2011).

    Article  CAS  Google Scholar 

  30. Mortier, V. et al. CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol. 153, 222–237 (2010).

    Article  CAS  Google Scholar 

  31. Lamport, D.T., Kieliszewski, M.J., Chen, Y. & Cannon, M.C. Role of the extensin superfamily in primary cell wall architecture. Plant Physiol. 156, 11–19 (2011).

    Article  CAS  Google Scholar 

  32. Gille, S., Hansel, U., Ziemann, M. & Pauly, M. Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases. Proc. Natl. Acad. Sci. USA 106, 14699–14704 (2009).

    Article  CAS  Google Scholar 

  33. Egelund, J. et al. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue. Plant Mol. Biol. 64, 439–451 (2007).

    Article  CAS  Google Scholar 

  34. Velasquez, S.M. et al. O-glycosylated cell wall proteins are essential in root hair growth. Science 332, 1401–1403 (2011).

    Article  CAS  Google Scholar 

  35. Matsubayashi, Y. Post-translational modifications in secreted peptide hormones in plants. Plant Cell Physiol. 52, 5–13 (2011).

    Article  CAS  Google Scholar 

  36. Abel, S. & Theologis, A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J. 5, 421–427 (1994).

    Article  CAS  Google Scholar 

  37. Moran, R. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 69, 1376–1381 (1982).

    Article  CAS  Google Scholar 

  38. Boavida, L.C. & McCormick, S. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 52, 570–582 (2007).

    Article  CAS  Google Scholar 

  39. Muschietti, J., Dircks, L., Vancanneyt, G. & McCormick, S. LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J. 6, 321–338 (1994).

    Article  CAS  Google Scholar 

  40. Schnabelrauch, L.S., Kieliszewski, M., Upham, B.L., Alizedeh, H. & Lamport, D.T. Isolation of pl 4.6 extensin peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site. Plant J. 9, 477–489 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institute for Basic Biology Functional Genomics Facility for MALDI-TOF MS analysis and T. Ueda (University of Tokyo) for providing the mRFP-SYP31 expression vector. This research was supported by the Funding Program for Next Generation World-Leading Researchers from the Japan Society for the Promotion of Science (no. GS025) and Grants-in-Aid for Scientific Research (S) from the Ministry of Education, Culture, Sports, Science and Technology (no. 25221105).

Author information

Authors and Affiliations

Authors

Contributions

M.O.-O. and Y.M. designed experiments. M.O.-O., W.M. and Y.M. performed and analyzed experiments. M.O.-O. and Y.M. wrote the manuscript. Y.M. supervised the project.

Corresponding author

Correspondence to Yoshikatsu Matsubayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–10. (PDF 8342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa-Ohnishi, M., Matsushita, W. & Matsubayashi, Y. Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana. Nat Chem Biol 9, 726–730 (2013). https://doi.org/10.1038/nchembio.1351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing