Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis

Abstract

Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the antiapoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique among BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules BAX and BAK. Structural investigations using NMR spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the antiapoptotic BCL-2 repertoire to sensitize for death receptor–activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage–induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and dynamic characterization of the BCL-xLΔLΔC–PUMABH3 complex in solution.
Figure 2: Mechanism of PUMA binding-induced p53 release from BCL-xL.
Figure 3: PUMA-induced p53 release from BCL-xL differentially regulates apoptotic pathways.
Figure 4: Trp71 of PUMA is required for p53-dependent, DNA damage–induced apoptosis.

Similar content being viewed by others

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

References

  1. Green, D.R. & Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127–1130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chipuk, J.E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D.D. & Green, D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Nakano, K. & Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Jeffers, J.R. et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Chipuk, J.E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Leu, J.I., Dumont, P., Hafey, M., Murphy, M.E. & George, D.L. Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nat. Cell Biol. 6, 443–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Chipuk, J.E. et al. Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc. Natl. Acad. Sci. USA 105, 20327–20332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hinds, M.G. et al. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ. 14, 128–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Petros, A.M. et al. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 9, 2528–2534 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, W., Huang, S., Wu, H. & Zhang, M. Molecular basis of Bcl-xL′s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J. Mol. Biol. 372, 223–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X., Dai, S., Zhu, Y., Marrack, P. & Kappler, J.W. The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19, 341–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Petros, A.M., Gunasekera, A., Xu, N., Olejniczak, E.T. & Fesik, S.W. Defining the p53 DNA-binding domain/Bcl-xL-binding interface using NMR. FEBS Lett. 559, 171–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hagn, F. et al. BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J. Biol. Chem. 285, 3439–3450 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Muchmore, S.W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Berjanskii, M. & Wishart, D.S. NMR: prediction of protein flexibility. Nat. Protoc. 1, 683–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. O′Neill, J.W., Manion, M.K., Maguire, B. & Hockenbery, D.M. BCL-XL dimerization by three-dimensional domain swapping. J. Mol. Biol. 356, 367–381 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Denisov, A.Y., Sprules, T., Fraser, J., Kozlov, G. & Gehring, K. Heat-induced dimerization of BCL-xL through α-helix swapping. Biochemistry 46, 734–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Day, C.L. et al. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J. Mol. Biol. 380, 958–971 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Smits, C., Czabotar, P.E., Hinds, M.G. & Day, C.L. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure 16, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Nikolova, P.V., Henckel, J., Lane, D.P. & Fersht, A.R. Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc. Natl. Acad. Sci. USA 95, 14675–14680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joerger, A.C., Allen, M.D. & Fersht, A.R. Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. J. Biol. Chem. 279, 1291–1296 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, H. et al. The MDM2-binding region in the transactivation domain of p53 also acts as a Bcl-X-L–binding motif. Biochemistry 48, 12159–12168 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, H. et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36, 487–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren, D. et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390–1393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyashita, O., Onuchic, J.N. & Wolynes, P.G. Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc. Natl. Acad. Sci. USA 100, 12570–12575 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swain, J.F. & Gierasch, L.M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol. 16, 102–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Frederick, K.K., Marlow, M.S., Valentine, K.G. & Wand, A.J. Conformational entropy in molecular recognition by proteins. Nature 448, 325–329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Tzeng, S.R. & Kalodimos, C.G. Dynamic activation of an allosteric regulatory protein. Nature 462, 368–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Boehr, D.D., McElheny, D., Dyson, H.J. & Wright, P.E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Masterson, L.R. et al. Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 108, 6969–6974 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smock, R.G. & Gierasch, L.M. Sending signals dynamically. Science 324, 198–203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y., Filippov, I., Richter, C., Luo, R. & Kriwacki, R.W. Solution NMR studies of an intrinsically unstructured protein within a dilute, 75 kDa eukaryotic protein assembly; probing the practical limits for efficiently assigning polypeptide backbone resonances. ChemBioChem 6, 2242–2246 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds. S.E. Harding, A.J. Rowe & J.C. Horton) 90–125 (The Royal Society of Chemistry, 1992).

  40. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schuck, P., Perugini, M.A., Gonzales, N.R., Howlett, G.J. & Schubert, D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096–1111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balbo, A., Brown, P.H., Braswell, E.H. & Schuck, P. Measuring protein-protein interactions by equilibrium sedimentation. Curr. Prot. Immunol. 18, 18.8 (2007).

    Google Scholar 

  43. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Keller, R.J.J. Optimizing the Process of Nuclear Magnetic Resonance Spectrum Analysis and Computer Aided Resonance Assignment. PhD thesis, Eidgenossische Technishe Hochschule (2005).

  45. Religa, T.L., Ruschak, A.M., Rosenzweig, R. & Kay, L.E. Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease. J. Am. Chem. Soc. 133, 9063–9068 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Tugarinov, V. & Kay, L.E. Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J. Am. Chem. Soc. 125, 13868–13878 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Tugarinov, V. & Kay, L.E. An isotope labeling strategy for methyl TROSY spectroscopy. J. Biomol. NMR 28, 165–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Tugarinov, V., Choy, W.Y., Orekhov, V.Y. & Kay, L.E. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc. Natl. Acad. Sci. USA 102, 622–627 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    PubMed  Google Scholar 

  50. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  52. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–D392 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  57. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.T. Opferman and S.W.G. Tait (St. Jude Children's Research Hospital) for the Mx-Cre bak−/− baxf/− animals and MCF7 SMAC-GFP cells, respectively. The prokaryotic expression vectors for PUMAβ and BCL-xLΔLΔC were kindly provided by E. Eldering (Academic Medical Center, Amsterdam) and G. Wagner (Harvard University), respectively. We would like to acknowledge D. Miller (St. Jude Children's Research Hospital) for help with synchrotron data collection. Southeast Regional Collaborative Access Team (SER-CAT) supporting institutions may be found at http://www.ser.aps.anl.gov. Use of the SER-CAT Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38. We would like to thank Bruker BioSpin and R. Weismann and W. Bermel for access to a 950-MHz NMR spectrometer. We also thank M. Madan Babu and A. Venkatakrishnan (Medical Research Council Laboratory of Molecular Biology, Cambridge, UK) for stimulating discussions and comments on the manuscript. This work was supported by NIH R01CA082491 and 1R01GM083159 (to R.W.K.), NIH R01GM52735 and R01GM96208 (to D.R.G.), NIH R01 CA157740 (to J.E.C.), the JJR Foundation (to J.E.C.), the William A. Spivak Fund (to J.E.C.), the Fridolin Charitable Trust (to J.E.C.), a National Cancer Institute Cancer Center Support Grant P30CA21765 (at St. Jude Children's Research Hospital), research grant no. 5-FY11-74 from the March of Dimes Foundation (to J.E.C.) and the American Lebanese Syrian Associated Charities. J.C.F. is a recipient of the Alma and Hal Reagan Cancer Research fellowship provided by the University of Tennessee Health Sciences Center.

Author information

Authors and Affiliations

Authors

Contributions

A.V.F., J.E.C. and J.C.F. as well as D.R.G. and R.W.K. contributed equally to this work. A.V.F. performed experiments, analyzed data and wrote the paper; J.E.C. performed experiments, analyzed data and wrote the paper; J.C.F. performed experiments, analyzed data and wrote the paper; M.-K.Y., C.R.G., A.N., K.B., L.O. and L.M. performed experiments and analyzed data; and S.W.W., D.R.G. and R.W.K. analyzed data and wrote the paper.

Corresponding authors

Correspondence to Douglas R Green or Richard W Kriwacki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 3113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follis, A., Chipuk, J., Fisher, J. et al. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 9, 163–168 (2013). https://doi.org/10.1038/nchembio.1166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing